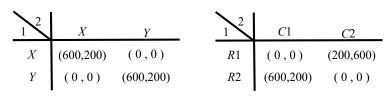
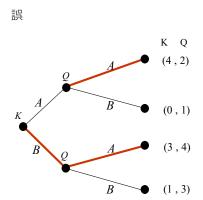
「一歩ずつ学ぶゲーム理論」正誤表

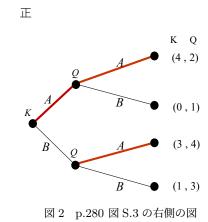
2023年1月31日

第 2 版 1 刷時点において、以下の誤りがあります。

頁	行	該当箇所	誤	正	
29	下から		のとき支配戦略である	のとき弱支配戦略である	
	10 行目				
34	8 行目	手順 1,	プレイヤー1の利得が	プレイヤー2の利得が	
		STEP.2			
39	脚注	脚注 13)1 行	弱支配されたナッシュ均衡	弱支配されないナッシュ均衡	
		目			
53	下から		$a_1 = a_2, b_1 = b_2, c_1 = c_2, d_1 = d_2$	$a_1 = a_2 = d_1 = d_2, b_1 = b_2, c_1 = c_2$	
	8 行目				
55	図 2.6		本正誤表の図1の左図	本正誤表の図 1 の右図	
58	4 行目		1:3である	3:1である	
60	17 行目		正の外部性	正のネットワーク外部性	
75	下から		という点は,その線上の	という点は、 x と y を結んだ線上の	
	7行目				
83	図 2.22	右下のセル	68	39	
86	下から	演習問題 2.5	$u_2(x,y) = -y^2 + 6xy + 28y$	$u_2(x,y) = -y^2 - 6xy + 28y$	
	10 行目				
86	下から	演習問題 2.6	$u_1(x,y) = (x-y)^2$	$u_1(x,y) = (x+y-1)^2$	
	2 行目				
89	11 行目	定義 3.1	対して $\phi(s_i) \geq 0$ かつ	… 対して $\phi_i(s_i) \geq 0$ かつ…	
102	9 行目		$u_2(\phi_1, L) = u_1(\phi_1, R)$	$u_2(\phi_1, L) = u_2(\phi_1, R)$	
106	19-20	定理 3.1	戦略の集合 S_i が有限であれば, ナッシュ	純粋戦略の集合 S_i が有限であれば、混	
	行目		均衡が存在する	合戦略まで含めると必ずナッシュ均衡が	
				存在する	

誤 正


図 1 p.55 図 2.6

110	7 行目		最小となる利得 $m(\phi_1)$ は,	最小となる利得は,	
121	17 行目		二子山が A を選べば,最低の利得 100	二子山が <i>B</i> を選べば,最低の利得 100	
130	12 行目	数学表現のミ	$\{K,Z\}$ も X の分割である.	$\{X,Z\}$ も K の分割である.	
		ニノート (5)	,	,	
155	下から	演習問題 4.5	ゲーム 1~4 の 4 つの展開形ゲームにつ	ゲーム 1~3 の 3 つの展開形ゲームにつ	
	7行目		いて	いて	
156		図 4.34	図 4.34 のゲーム 4 は、削除とします。な	お、このゲーム4の解答は、	
			本正誤表の後半に載せています。		
165	5 行目		プレイヤー 2 が $x(2) = 1 - \delta$ を提案し	プレイヤー 2 が $x(2) = \delta$ を提案し	
168	21 行目		に選んだ戦略を選ぶ	に選んだ行動を選ぶ	
168	23 行目		に選んだ戦略を選ぶ	に選んだ行動を選ぶ	
169	9 行目	例題 5.1 の解	((C, D), (D, D), (D, D), (D, D))	((D,C),(D,D),(D,D),(D,D))	
		(2)			
169	12 行目		これを $a(s) = \dots$	これを $a^t(s) = \dots$	
169	下から	式 (5.3)	$U_{i}(s) = \sum_{i=1}^{T} \delta^{t-1} u_{i}(a^{t}(s(t)))$	$U_i(s) = \sum_{t=1}^{T} \delta^{t-1} u_i(a^t(s))$	
	2 行目		i=1	t=1	
173	2 行目		利得は $a/(1-\delta) \ge c$ となる	利得は $a/(1-\delta)$ となる	
184	脚注 2		$X_1 \cap \dots \cap X_n = \Omega$	$X_1 \cup \dots \cup X_n = \Omega$	
191	下から	定義 6.3	$P(y) = \prod_{j=1}^{n} \gamma_{i(j)}(h(j))(a(j))$	$P(y) = \prod_{j=0}^{m} \gamma_{i(j)}(h(j))(a(j))$	
	2 行目		•		
210	図 7.3		アリスの視点に立つ. 文太が各戦略を	文太の視点に立つ. アリスが各戦略を	
	$\mathcal{O}(3)$				
217	20 行目		展開型	展開形	
219	17 行目	式 (7.1)	$\sum_{\hat{t}_{-i} \in T_{-i}} P(\hat{t}_{-i} t_i) u_i(s_i(t_i), s_{-i}(\hat{t}_{-i}))$	$\sum_{\hat{t}_{-i} \in T_{-i}} P(\hat{t}_{-i} t_i) u_i(s_i(t_i), s_{-i}(\hat{t}_{-i}) (t_i, \hat{t}_{-i}))$	
219	20 行目		タイプが t_{-i} であるならば,行	タイプが \hat{t}_{-i} であるならば, 行	
			動 $s_{-i}(t_{-i})$ を選ぶので,利得は	動 $s_{-i}(\hat{t}_{-i})$ を選ぶので,利得は	
			$u_i(s_i(t_i), s_{-i}(t_{-i}))$ である. プレイヤー	$\left u_i(s_i(t_i), s_{-i}(\hat{t}_{-i}) (t_i, \hat{t}_{-i})) \right $ である. プ	
			i のタイプ t_i は,自分以外のプレイヤー	レイヤー i のタイプ t_i は,自分以外の	
			のタイプが t_{-i} である確率を $P(t_{-i} t_i)$	プレイヤーのタイプが \hat{t}_{-i} である確率を	
			であると推測しているので,	$P(\hat{t}_{-i} t_i)$ であると推測しているので,	
219	下から	定義 7.1	$\sum P(\hat{t}_{-i} t_i)u_i(s_i(t_i), s_{-i}(\hat{t}_{-i})) \geq$	$\sum_{\hat{t}_{-i} \in T_{-i}} P(\hat{t}_{-i} t_i) u_i(s_i(t_i), s_{-i}(\hat{t}_{-i}) (t_i, \hat{t}_{-i}))$	
	2 行目		$\sum_{i=1}^{\hat{t}_{-i} \in T_{-i}} P(\hat{t}_{-i} t_i) u_i(a_i, s_{-i}(\hat{t}_{-i}))$	$ \geq \sum_{\hat{t}_{-i} \in T_{-i}}^{P(\hat{t}_{-i} t_{i})} u_{i}(a_{i}, s_{-i}(\hat{t}_{-i}) (t_{i}, \hat{t}_{-i})) $	
			$\sum_{\hat{t}_{-i} \in T_{-i}} I(t_{-i} t_i) u_i(u_i, s_{-i}(t_{-i}))$		
230	9 行目	定義 8.1	$\mu(x)P(h) = P(x)$	$\mu(x)P_{\gamma}(h) = P_{\gamma}(x)$	
250	18 行目	数学表現のミ	$2^A \setminus \emptyset$	$2^N\setminus\{\emptyset\}$	
		ニノート(6)			

255	下から		コアは必ず存在するわけではない	コアに属する配分は必ず存在するわけで
	5 行目			はない
255	下から		コアが存在しない典型的な例	コアに属する配分が存在しない(コアが
	4 行目			空集合である)典型的な例
259	下から		コアが存在すれば、仁は必ず	コアが非空であれば、仁は必ず
	9 行目			
259	下から		コアが存在しなくても、	コア空であっても,
	9 行目			
262	11 行目	命題 9.2	限界貢献度が等しい	提携値が等しい
262	下から	命題 9.2	正の 1 次変換からの不変性(9.5 節で学	パレート条件(全体合理性)
	3 行目		ぶ)	
263	8 行目		とも計算できる.	とも計算できる (集合 A に対し $ A $ はそ
				の要素の数を表す).
265	10 行目		$v(\{i\}) = 0$ となり	$w(\{i\}) = 0$ となり
277	下から	演習問題	U を削除した場合, プレイヤー 1 の D と	Uを削除した場合、プレイヤー 1 の D と
	11 行目	1.6(2) 解答	プレイヤー 2 の L が弱支配された戦略	プレイヤー 2 の R が弱支配された戦略
			となる. D を削除した場合は最後に残	となる. D を削除した場合は最後に残
			るのは (M,L) と (M,R) であり, L を	るのは (M,L) と (M,R) であり, R を
			削除した場合は次に D が削除されるの	削除した場合は次に D が削除されるの
			で,最後に残るのは (M,R) だけである.	で,最後に残るのは (M,L) だけである.
			一方, D を削除した場合,プレイヤー 1	一方, D を削除した場合,プレイヤー 1
			の U とプレイヤー 2 の R が弱支配され	の U とプレイヤー 2 の L が弱支配され
			た戦略となる. U を削除した場合は最	た戦略となる. U を削除した場合は最
			後に残るのは (M,L) と (M,R) であり,	後に残るのは (M,L) と (M,R) であり,
			R を削除した場合は次に U が削除され	$m{L}$ を削除した場合は次に U が削除され
			るので,最後に残るのは (M,L) だけで	るので,最後に残るのは (M,R) だけで
			ある. 弱支配された戦略の削除を認める	ある. 弱支配された戦略の削除を認める
			と, $U \Rightarrow L \Rightarrow D$ と削除すると (M,R)	と, $U \Rightarrow \mathbb{R} \Rightarrow D$ と削除すると (M, L)
			だけが残り, $D \Rightarrow R \Rightarrow U$ と削除すると	だけが残り, $D \Rightarrow L \Rightarrow U$ と削除すると
			(M,L) だけが残る.	(M,R) だけが残る.
278	2 行目	演習問題	(S は弱支配戦略ではあるが、支配戦略	(文太の S と Z は戦略的同等で、支配
		1.7(2) 解答	ではない)	関係はない)
278	20 行目	演習問題	ゲーム 3 : $(A, M), (B, L), (C, L)$	ゲーム $3:(A,M),(B,L)$
		2.1(2) 解答		

278	下から	演習問題	$x_1 = 1 - x_2$	$x_1 = 1 - x_2 (0 \le x_2 < 1), \ x_2 = 1 \text{ Tis.}$
	8 行目	2.4(1) 解答		すべての $0 \le x_1 \le 1$ が最適反応
278	下から	演習問題	$x_1 + x_2 = 1$ を満たす (x_1, x_2) はすべて	$x_1 + x_2 = 1,0 \le x_1, x_2 \le 1$ を満たす
	7行目	2.4(2) 解答	ナッシュ均衡(ただし、 $0 \le x_1, x_2 \le 1$)	(x_1,x_2) 、および $(1,1)$
278	下から	演習問題	解答は、この正誤表のように訂正した問題	夏の解答です。問題を訂正し
	5 行目	2.5(2) 解答	なかった場合、解答は $x=-28/5$ 、 $y=-28/5$	-14/5 となります。
278	下から	演習問題	解答は、この正誤表のように訂正した問題	夏の解答です。問題を訂正し
	4 行目	2.6(1) 解答	なかった場合は、ナッシュ均衡は存在しま	ミせん。
279	2 行目	演習問題 3.1	プレイヤー 2 の期待利得は 7/4	プレイヤー 2 の期待利得は 7/2
		解答		
280	図 S.3	演習問題	図 S.3 の右図は、本正誤表の図 2 の左の	図のように書かれています
	の右図	4.2(2) 解答	が、正しくは図 2 の右の図となります。 $(K$ は B ではなく A を選ぶ)	
281	1 行目	演習問題 4.4	ゲーム 3:ナッシュ均衡 (<i>NA,C</i>),	ゲーム 3:ナッシュ均衡 (<i>NA</i> , <i>C</i>),
		解答	(NB,D)	(NB,C)
			(第1版第1刷で正しかった部分を、第2版第1刷で誤って修正して	
			しまいました。第2版第1刷のみ、この部分が違っています。)	
284	図 S.9	(DB,D) Ø	(-1,1)	$ \mid (1, -1)$
		利得		
285	下から	演習問題	$p/2 \le 1$ であれば	$p \le 1/2$ であれば
	7 行目	8.1(2) 解答		
285	表 S.2	均衡1の信念	q = 1	q = 1/4
286	7 行目	演習問題	すべての均衡で	すべての均衡の結果として
		8.3(4) の解		
		答		
287	3 行目	演習問題	文太が A を選び,	文太が R を選び,
		8.5(2) の解		
		答		
288		演習問題	特性関数を $v(A),v(AB)\cdots$ などと略して表記していますが、本書で	
		9.3,9.4 解答	は $v(\{A\}),v(\{A,B\})\cdots$ と集合の関数として表記しており、そのよ	
			うに修正します。	

■演習問題 4.5 ゲーム 4 の解答 演習問題 4.5 ゲーム 4 の解答は以下の通りです。この問題は第 2 版 2 刷以降では削除される予定です。

- 利得行列は図3となる。
- ナッシュ均衡は (AP, LE), (AQ, LE), (BP, RE), (BQ, RE), (CP, LD), (CP, RD).
- 部分ゲーム完全均衡は (AQ, LE), (BQ, RE)

ゲーム4

12		LE	RD	RE
AP	(5,6)	(5,6)	(3,3)	(3,3)
AQ	(5,6)	(5,6)	(3,3)	(3,3)
	(2,4)	(2,4)	(6,5)	(6,5)
	(2,4)	(2,4)	(6,5)	(6,5)
	(7,1)	(0,0)	(7,1)	(0,0)
CQ	(7,1)	(1,2)	(7,1)	(1,2)

図 3 演習問題 4.5 ゲーム 4 の利得行列

第1刷以前の誤り

第1刷には以下の誤りがあります。第2版1刷(2022年6月発行)以降では修正されています。

頁	行	該当箇所	誤	正
157	下から	演習問題 4.8	A を選ぶと第 2 段階 (A) に B を選ぶと	A を選ぶと第 2 段階 $\left(\mathrm{a}\right)$ に B を選ぶと
	3 行目		第2段階(B)に	第2段階 (b) に
277	16 行目	演習問題 1.4	(3) ゲーム 1 : (D,R)	(3) ゲーム 1 : $(D,L),(D,R)$
		解答		
280	下から	演習問題 4.2	Q が後手では, Q は A を, K は B を	Qが後手では, Q も K も A を選ぶ.
	4 行目	解答	選ぶ、結果は、すべて異なったものにな	
			3 .	
281	1 行目	演習問題 4.4	ゲーム 3:ナッシュ均衡 (<i>NA,C</i>),	ゲーム 3:ナッシュ均衡 (<i>NA,C</i>),
		解答	(NB,C), 部 分 ゲ ー ム 完 全 均 衡	(NB,C), 部分ゲーム完全均衡
			(NB,C). ゲーム 4:ナッシュ均衡	(NA,C). ゲーム 4:ナッシュ均衡
			(YA,C), (NA,D) ,部分ゲーム完全均	(Y,C), (B,D), 部分ゲーム完全均衡
			衡 (YA,C) , (NA,D) .	(Y,C), (B,D).
282	8 行目	演習問題 4.7	f - ム 2 : (AA,CC) , (BA,DC) ,	ゲ ー ム $2:(AA,CC), (BA,DC),$
		解答	(BB,CC)	(BB,CD).