ゲーム理論で探究学習!

東京都立大学 経済経営学部 渡辺隆裕

自己紹介

- ▶ 渡辺隆裕
- 東京都立大学 経済経営学部 教授
 - 南大沢キャンパス。日野キャンパスではない
- 北海道出身、東工大卒、もとは理系
- ゲーム理論を研究している
- ▶ 八王子東高校の探究学習のサポートは2021年から

「ゲーム理論 渡辺」と検索すると、私のホームページが出てきます。 詳しくはそちらで

ゲーム理論とは?

- 皆さんの生活での問題、友だちとの関係、学校で起きるトラブル…のような身近なことから
- 企業の値下げ競争、国どうしの争い、歴史上のできごとまで
- ▶人間社会のあらゆる問題を、統一した枠組みで 分析できる!それが

ゲーム理論

人間どうし、企業間、国と国との問題は 2人以上のプレイヤーが、ゲームをしていると考える そってくですが

ゲーム理論で問題を考えてみよう!

ゲームを作り、それを解く

問題に詳しくなろう

▶ まず、問題に詳しくなろう ⇒問題について、よく調べる

僕達の班はゲーム理 論で、ウクライナ問題を 分析するよ

へー! すごいね! そもそも、なぜ戦 争が始まったの?

一ノ瀬アリス

それは、これからゲー ム理論で明らかにす るんだよ! ウクライナってどこ にあって、 どこと戦争してるか、 知ってる?

ゲーム理論で考える前に、 まず問題をよく調べて、 よく知ろう

モデルを作る

次に、ゲーム理論のモデルを作る

- 1)ゲーム理論の3要素を決めるプレイヤー、戦略、利得
- ※利得は後からのほうが、いいかも
- 2)同時のゲーム(戦略形ゲーム)か、交互のゲーム(展開形ゲーム)か、を決める

同時のゲーム⇒利得行列を書く 交互のゲーム⇒ゲームの木を書く

一ノ瀬アリス

モデル作成の例 (戦略形ゲームの場合)

二子山文太

(例)「放課後どこに行くか?」

- アリスと文太は、放課後に「ショップA」か「カフェB」に行く
- 相談することなく別々に行く
- 二人は、どこに行くんだろうか?
- I. ゲーム理論の3要素
 - I. プレイヤー ⇒ アリスと文太
 - 2. 戦略(プレイヤーが選ぶ行動・選択肢) ⇒「ショップA」「カフェB」
 - 3. 利得(プレイヤーの嬉しさ、利益を数値や点数にする) ⇒後から考えることにする
- 同時のゲーム(戦略形ゲーム)とする! じゃあ、利得行列を書いてみよう!

利得行列の枠組みを作ろう

- 戦略とプレイヤーで利得行列の「枠」を作ろう!
- 利得は「枠」のあとに考えた方がやりやすいかも

文太アリス	ショップA	カフェB
ショップA	(,)	(,)
カフェB	(,)	(,)

行動が選ばれたときの利得 を決める:

利得とは?⇒嬉しさを表す数 値や点数と考えよう。

ここでは、利得を以下のように考えました!

- 二人は仲良しなので、できれば同じところに行きたい
- しかし、アリスは会うことよりショップAに行くことが大事(ショップAに行くと2点、カフェBは0点)、文太に会えると1点プラス!
- 文太は、どちらに行っても同じ。アリスと会えれば2点、会えないと0点

利得行列を完成させる

利得を決めて、利得行列を完成させよう!

文太アリス	ショップA	カフェB
ショップA	(3,2)	(2,0)
カフェB	(0,0)	(1,2)

できた!

利得 アリス

- ショップAに行くと2点
- カフェBはO点
- 文太に会えると1点プラス!

文太

- アリスと会えれば2点
- 会えないとO点

どのような利得にするかは、人によって違う!

利得が変われば結果も変わる

文太アリス	ショップA	カフェB
ショップA	(-1,2)	(2,0)
カフェB	(0,0)	(-3,2)

利	徉	于
ア	IJ	ス

- ショップAに行くと2点
- カフェBはO点
- 文太に会うと3点マイナス!

文太

- アリスと会えれば2点
- 会えないと0点

文太アリス	ショップA	カフェB
ショップA	(-1, 2)	(2,0)
カフェB	$(\underline{0},0)$	(-3,_2)

ゲームの結果

確率を使う混合戦略

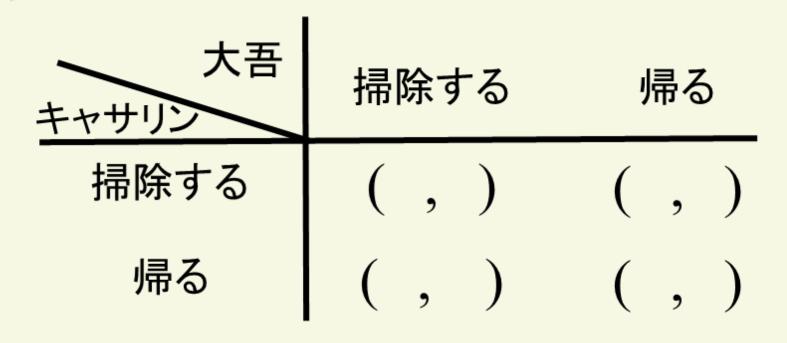
- アリスはAとBをI/2で選ぶ
- 文太はAを5/6、Bを1/6で 選ぶ

ワークショップ!

利得行列を作ってみよう!

三輪キャサリン

四元大吾


- キャサリンと大吾は「けん玉部」に入っている
- 月曜日は、2人が部室の掃除当番になっている
- 果たして部室はきちんと掃除されるんだろうか!?

あなたには、あなたの考える設定があるはず!

- たとえば?
 - ▶ 2人とも掃除が嫌いで、帰ったほうがいい?
 - それとも、大吾は綺麗好きで、たとえキャサリンが掃除をしなくても、自分 だけでも掃除をしたほうがいい!とか
 - ▶ お互い部室が汚くても気にならない、いや、部室が汚いほうが落ち着く!とか

やってみよう!

皆さんで考えて、利得を埋めてください そして、その利得になった理由を説明してください

(解答例): 利得行列の例

利得を決めて、利得行列を完成させよう!

たとえば、利得を以下のように考えると?

- 自分は帰って、相手は掃除が一番得!⇒3点
- ・ お互いに掃除するのが、次にいい⇒2点
- 自分だけ掃除するのは最悪!⇒O点
- お互いに帰るのは、1点かな...

大吾 キャサリン	掃除する	帰る
掃除する	(2,2)	(0,3)
帰る	(3,0)	(1,1)

まとめ

利得行列ができたら

実際の問題を、どんなモデルにするかは 人によって違う

でも、作られたモデルのゲーム理論による解は、方程式を解くように1つに決まる

ナッシュ均衡

ゲームの解はナッシュ均衡

利得行列ができると答が決まる!

自分たちで勉強してね(意外と簡単だよ)

戦略形ゲームの解は ナッシュ均衡 (または支配戦略) 展開形ゲームの解は バックワードインダクション

文太アリス	ショップA	カフェB
ショップA	(3,2)	(2,0)
カフェB	(0,0)	(1,2)

ゲームの結果 2人ともショップAに行く

利得

アリス

- ショップAに行くと2点
- カフェBはO点
- 文太に会えると1点プラス!

文太

- アリスと会えれば2点
- 会えないと0点

ゲームを解く

ゲームを作ったら、解を求める

大吾キャサリン	掃除する	帰る
掃除する	(2,2)	(0,3)
帰る	(3,0)	(1,1)

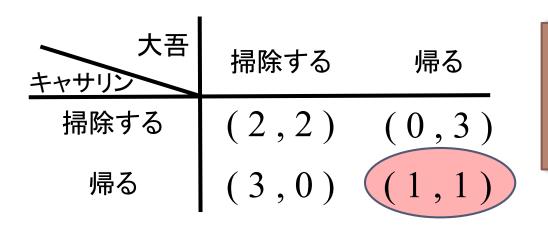
このゲームの解は?

お互いに掃除したほうが、 お互いに帰るよりいいから、 2人が掃除することが、この ゲームの解だと思います

ちがうよ!

自分勝手に答を考えるなら、 ゲーム理論を使う意味がない!

意外とそういう人多い


自分たちで勉強してね (意外と簡単だよ)

戦略形ゲームの解は ナッシュ均衡 (または支配戦略) 展開形ゲームの解は バックワードインダクション

利得の変化とゲームの解

利得の変化でゲームがどう変わるか、考えてみよう

このゲームのナッシュ均衡は

「両者ともに掃除しない」

キャサリンの利得が以下のように変わったら?

- 自分だけ掃除する O点⇒1点
- お互いに帰る 1点⇒0点

他は同じ

- 自分は帰って相手は掃除:3点
- お互いに掃除:2点

「自分だけ帰る」が一番いいのには変わりない、 結果は変わるんだろうか?

大吾 キャサリン	掃除する	帰る
掃除する	(2,2)	(1,3)
帰る	(3,0)	(0,1)

このゲームのナッシュ均衡は「キャサリンが掃除して、大吾は掃除しない」

ゲームの解が求められたら終わりではない!

- そこから探究の始まり!
- 1 なぜ、そのような結果になったのかを考えよう
- 2. 利得を変えたら、結果がどう変わるかを考えよう
- 3. ゲーム理論の用語や考え方に当てはめられないか?それに ついての理論が使えないか?
 - 囚人のジレンマ、コーディネーションゲーム(調整ゲーム)、チキンゲーム、 モラルハザード…などの用語で説明できないか
 - ▶ 囚人のジレンマ ⇒長期関係による解決(繰り返しゲーム)調整ゲーム ⇒フォーカルポイントによる解決

登場人物

一ノ瀬アリス

二子山文太

三輪キャサリン

四元大吾