クールノー競争とベルトラン競争入門(4):図と最適反応関数で理解するクールノー競争

クールノー競争の価格・生産量と社会的総余剰では、2社のクールノー競争におけるクールノー均衡を求める方法を説明しました。ここではそれを「最適反応曲線」(反応曲線、最適反応関数)と呼ばれる図で説明し、ナッシュ均衡との関連をより明確にします。

モデルの設定(再掲)

クールノー競争の価格・生産量と社会的総余剰で説明した設定を再掲します。そこから読んでいる方は、ここは飛ばして構いません。

  • 同じ製品を販売している企業AとB。
  • AとBの生産量をそれぞれ\(x_A,x_B\)とする。
  • 市場全体の生産量を\(x=x_A+x_B\)とし、その価格\(p\)は$$p=a-bx$$で与えられるとする。
  • 製品1単位の費用(限界費用)はAもBも\(c\)で同じとする。
  • 企業Aの利益を\(\pi_A\)とおく。$$\pi_A=px_A-cx_A$$。
  • 企業Aの利益\(\pi_A\)を最大にする\(x_A\)を考える。\(p=a-bx\)を代入し、\(x=x_A+x_B\)に注意すると\[ \begin{align} \pi_A &=\{a-b(x_A+x_B)\}x_A-cx_A\\&=-bx_A^2-bx_Ax_B+(a-c)x_A \tag{1} \end{align}\]とる。
  • 式(1)を最大にする\(x_A\)を求めるため、\(x_A\)で微分して0になるところを求める。(1)を\(x_A\)で微分すると、\(-2bx_A-bx_B+(a-c)\)。したがって\[-2bx_A-bx_B+(a-c)=0\]を解けば良く、これより\[x_A=-\frac{1}{2}x_B+\frac{a-c}{2b} \tag{2}\]となる。
  • 企業Bの利益を\(\pi_B\)とおく。$$\pi_B=px_B-cx_B$$。
  • 企業Bの利益\(\pi_B\)を最大にする\(x_B\)を求めると、\[x_B=-\frac{1}{2}x_A+\frac{a-c}{2b} \tag{3}\]となる。
  • 式(2)と式(3)を、それぞれ「企業Aの最適反応関数」「企業Bの最適反応関数」と呼びます。
  • 式(2)は企業Bの生産量\(x_B)\が与えられたときに、企業Aの利益を最大にする企業Aの生産量を表しています。
  • 式(3)は企業Aの生産量\(x_A)\が与えられたときに、企業Bの利益を最大にする企業Bの生産量を表しています。

最適反応関数を図で書く-最適反応曲線

上記の最適反応関数を横軸に(x_A)、縦軸に(x_B)にした図(グラフ)に描いてみます。まず式(3)の企業Bの最適反応関数から考えてみます(⇒なぜなら、左辺は縦軸、右辺は横軸のグラフに慣れている人が多いからです)。式(3)のグラフを書いてみると、以下のようになります。

企業Bの最適反応曲線

この式は切片が\(\frac{a-c}{2}\}で、傾きが-1/2の右下がりの直線になります。これは企業Aの生産量が与えられると、そのとき企業Bの利益が最大になる生産量がいくつであるかを示す曲線になるわけです。企業Bは、もし企業Aの生産量が決まれば、自分がもっとも利益が高くなる生産量が分かるわけですが、企業Aの生産量は決まっていません。そこでこれに式(2)の企業Aの最適反応曲線を描き、重ねてみます。

 

企業Aと企業Bの最適反応曲線

企業Aは、企業Bと縦軸と横軸が逆になりますね。切片と傾きは同じです。企業Aは、もし企業Bの生産量が決まれば、自分の利益を最大にする生産量が分かるわけですが、企業Bの生産量は決まっていません。

企業Bの生産量が決まらないと企業Aの生産量が決まらず、企業Aの生産量が決まらないと企業Bの生産量が決まらない。そこで「お互いが最適反応となる生産量の組」を選び合うことが答となると考えます。これがナッシュ均衡、またはクールノー均衡(またはクールノー=ナッシュ均衡)と呼ばれるものです。

ナッシュ均衡は20世紀半ばにゲーム理論で考えられたものですが、寡占市場の分析に限ると、それより100年以上も前にクールノーが上記の解を考えていたことによるため、このように呼ばれます。

お互いが最適反応となる生産量の組は、両方の直線が交わった点です(次の図)。この点は、式(2)と式(3)の連立方程式を解くことによって求められます。これを求めると、\[x_A=x_B=\frac{a-c}{3}\]となります。

 

クールノー均衡

以下も参考にして下さい。

ナッシュ均衡の求め方:2人ゲームの利得行列の場合

ここではゲーム理論におけるナッシュ均衡を求める方法について。「プレイヤーが2人で混合戦略(確率を用いる戦略)を考えない場合」について説明します。ゲーム理論の基本中の基本と言えます。

  • 混合戦略(確率を用いる戦略)のナッシュ均衡の求め方こちら
  • クールノー均衡の求め方はこちら
  • ナッシュ均衡とは何かはこちら
  • ナッシュ均衡の概念を理解するおけいこはこちら

ナッシュ均衡の求め方

ナッシュ均衡は「すべてのプレイヤーが最適反応戦略(利得が最も高くなる戦略)を選び合う戦略の組み合わせ」ですから、以下の方法で求めることができます。

  • STEP1 プレイヤー1の立場で考える。
    • 相手(プレイヤー2)のすべての戦略に対して、プレイヤー1がもっとも利得が高くなる戦略をチェックする(プレイヤー1の最適反応戦略)。ここでは利得に下線を引く。
  • STEP2 プレイヤー1の立場でチェックが終わったら、プレイヤー2の立場で考える。
    • 相手(プレイヤー1)のすべての戦略に対して、プレイヤー2がもっとも利得が高くなる戦略をチェックする(プレイヤー2の最適反応戦略)。ここでは利得に下線を引く。
  • STEP3 すべてのチェックが終わったら、両プレイヤーの利得に下線が引かれているのがナッシュ均衡。(利得ではなく、戦略の組であることに注意!)

例題

以下の利得行列でナッシュ均衡を求めてみましょう。

ナッシュ均衡を求めてみよう

今回は、ナッシュ均衡を求める手順を習得することが目的なので、ストーリーは特につけずに、単なる記号で利得行列を考えます。利得行列の読み方が不安、分からないって方は、こちらをご覧ください。

STEP1 まず、プレイヤー1の立場で考えます。相手(プレイヤー2)のすべての戦略に対して、プレイヤー1がもっとも利得が高くなる戦略(最適反応戦略)をチェックし、利得の下に下線を引いて行きます。

1.1 プレイヤー2がLという戦略を選んだ場合を考えます。プレイヤー1はTを選べば利得3、Bを選べば利得2です。したがってプレイヤー1はTを選びます(TがLに対する最適反応戦略)。そこでTを選んだ時の利得3に下線を引きます。

プレイヤー2のLに対するプレイヤー1の最適反応戦略はT

1.2 プレイヤー2がMという戦略を選んだら?プレイヤー1はTを選べば利得0、Bを選べば利得1です。したがってプレイヤー1はBを選びます(BがMに対する最適反応戦略)。そこでBの利得1に下線を引きます。

プレイヤー2のMに対するプレイヤー1の最適反応戦略はB

1.3 最後にプレイヤー2がRという戦略を選んだ場合を考えます。プレイヤー1はTを選んでも、Bを選んでも利得は2で同じです。この場合はTとBの利得2の両方に下線を引きます( TもBもRに対する最適反応戦略)。

プレイヤー2のRに対するプレイヤー1の最適反応戦略はTとB

STEP2 プレイヤー1に対する検討が終わったので、次にプレイヤー2の立場で考えます。相手(プレイヤー1)のすべての戦略に対して、プレイヤー2の利得がもっとも高くなる戦略(最適反応戦略)をチェックし、利得に下線を引いて行きます。

2.1 プレイヤー1がTという戦略を選んだ場合を考えます。プレイヤー2はLを選べば利得4、Mを選べば利得2、Rを選べば利得0です。したがってプレイヤー2はLを選びます(LがTに対する最適反応戦略)。そこでLの利得4に下線を引きます。

プレイヤー1のTに対するプレイヤー2の最適反応戦略はL

2.2 最後にプレイヤー1がBという戦略を選んだ場合を考えます。プレイヤー2はLを選べば利得2、Mを選べば利得3、Rを選べば利得9です。したがってプレイヤー2はRを選びます(RがBに対する最適反応戦略)。そこでRの利得9の下に線を引きます。

プレイヤー1のBに対するプレイヤー2の最適反応戦略はR

STEP3これでプレイヤー1とプレイヤー2のすべてのチェックが終わりました。プレイヤーの両方の利得に下線が引かれている戦略の組がナッシュ均衡です!「

ナッシュ均衡は(T,L)と(B,R)

ナッシュ均衡は「プレイヤー1はTを選び、プレイヤー2はLを選ぶ」「プレイヤー1はBを選び、プレイヤー2はRを選ぶ」の2つです。このようにナッシュ均衡は複数出てくる場合があります(これが悩みの種)。これを(T,L)と(B,R)のように、ベクトルのように書く場合もあります。

ナッシュ均衡は「戦略の組 (profile of strategies)」なので、戦略の組として答えます。「ナッシュ均衡は(3,4)と(2,9)です」などと答えては間違いです。それは利得の組ですから。「Tがナッシュ均衡」などと答えても間違いです。Tはプレイヤー1の戦略(a strategy of player 1)です。戦略の組み合わせではありません。

東京都立大学 2020ゲーム理論1 オンライン講義(2020:コロナ対応)

クールノー競争とベルトラン競争入門(3):クールノー競争の価格・生産量と社会的総余剰

独占市場における価格と生産量の決定を理解したとして、ここでは2社のクールノー競争の価格と生産量の決定、および社会的総余剰の計算について説明します。

クールノー競争の価格と生産量の決定:モデル

ここでは同質財を販売している2社の生産量競争を考えます。一般にクールノー競争と呼ばれるのは、このモデルです(不完全競争市場の分類)。

  • 企業AとBが同じ製品(同質財)を販売するとします。AとBの生産量をそれぞれ\(x_A,x_B\)とし、AとBは\(x_A,x_B\)を決定するとしましょう。
  • 市場全体の生産量を\(x=x_A+x_B\)に対して、その価格\(p\)は$$p=a-bx$$で与えられるとします。
  • ここで製品を1単位の費用(限界費用)はAもBも\(c\)で同じであり、生産量にかかわらず一定とします。簡単にするため固定費は考えません。
  • AとBは利益を最大にすると考えます。AとBは、生産量\(x_A、x_B\)をいくらにするでしょうか。

問題の解法

問題は以下のようにして解くことができます。

  • 企業Aの利益を\(\pi_A\)とおく。ここで(利益)=(収入)-(費用)であり、収入は(価格)\(\times\)(生産量)、費用は(限界費用)\(\times\)(生産量)となります。したがって$$\pi_A=px_A-cx_A$$となります。
  • この\(\pi_A\)を最大にする\(x_A\)を考えます。そこで\(p=a-bx\)を代入し、さらに\(x=x_A+x_B\)に注意すると\[ \begin{align} \pi_A &= px_A-cx_A \\ &=(a-bx)x_A-cx_A \\&=
    \{a-b(x_A+x_B)\}x_A-cx_A\\&=-bx_A^2-bx_Ax_B+(a-c)x_A \tag{1} \end{align}\]となります。
  • この式(1)を最大にする\(x_A\)を求めるには、ざっくり言うと\(x_A\)で微分
    (正確には偏微分)して0になるところを求めれば良い。(1)を\(x_A\)で微分すると、\(-2bx_A-bx_B+(a-c)\)となります。したがって\[-2bx_A-bx_B+(a-c)=0\]を解けば良く、これより\[x_A=-\frac{1}{2}x_B+\frac{a-c}{2b} \tag{2}\]となります。
  • 式(2)は、企業Aの最適反応関数と呼ばれます。式(2)は\(x_B\)が与えられたときに企業Aの利益を最大にする企業Aの生産量を表しています。したがって、企業Bの生産量が決まれば、企業Aとの最適な生産量(答)が決まるのですが、企業Bの生産量がいくらになるか分かりません。そこで企業Bが利益を最大にする生産量を同様に求めてみます。
  • 企業Bの利益を\(\pi_B\)とおきます。$$\pi_B=px_B-cx_B$$であり、企業Aの場合と同様に\(p=a-bx\)を代入して計算し、$$\pi_B=-bx_B^2-bx_Ax_B+(a-c)x_B$$を得ます。さらに\(x_B\)で微分して0になるところを求めると、\[x_B=-\frac{1}{2}x_A+\frac{a-c}{2b} \tag{3}\]となります。
  • この式(3)は、企業Bの最適反応関数と呼ばれます。企業Aと同様に\(x_A\)が与えられたときに、企業Bの利益を最大にする企業Bの生産量を表しています。
  • ここで、企業Aは企業Bの生産量が分からなければ、利益を最大にする生産量が分からず、企業Bは企業Aの生産量が分からなければ、利益を最大にする生産量が分かりません。ここでゲーム理論のナッシュ均衡の概念により解を求めるわけです。ナッシュ均衡は、お互いが最適反応戦略を選び合うような戦略の組み合わせで、ここでは式(2)と式(3)を同時に満たす\(x_A\)、\(x_B\)となります。
  • 式(2)と式(3)を同時に満たす\(x_A\)、\(x_B\)は、これらを連立方程式で解くことによって求められます。式(3)の\(x_B\)を式(2)に代入して計算すると\(x_A=-\frac{1}{4}x_A+\frac{a-c}{4b}\)となり、これから\(x_A=\frac{a-c}{3b}\)を得ます。またこれを式(2)に代入して、\(x_B=\frac{a-c}{3b}\)を得ます。
    このときの価格は\[p=a-bx=a-b(x_A+x_B)=\frac{a+2c}{3} \]となります。
  • このとき企業Aの利益は\[ \begin{align} \pi_A &= px_A-cx_A =(p-c)x_A\\ &=\left(\frac{a+2c}{3}-c\right)\left(\frac{a-c}{3b}\right)=\frac{(a-c)^2}{9b} \end{align}\] となります。同様に企業Bの利益も同じになります。

まとめますと、クールノー競争における企業Aと企業Bの生産量は\(x_A=x_B=\frac{a-c}{3b}\)となります。これをクールノー均衡と呼びます。クールノー均衡における価格は\(p=\frac{a+2c}{3}\)、各企業の利益は\(\pi_A=\pi_B=\frac{(a-c)^2}{9b}\)となります。

消費者余剰、社会的総余剰

独占市場における、消費者余剰、生産者余剰、社会的総余剰について示します。

市場全体の取引量が\(x=x_A+x_B=\frac{2(a-c)}{3b}\)であることに注意すると、上記で求めたクールノー競争の価格と生産量と企業の限界費用は、以下の図で示すことができます。

クールノー競争における生産量・価格・社会的総余剰

消費者余剰は、図の青色で示された部分の三角形です。

三角形の底辺の長さは\(\frac{2(a-c)}{3b}\)、高さは\[ a-\frac{a+2c}{3}=\frac{2(a-c)}{3} \]ですから、三角形の面積は\[ \frac{1}{2} \times\frac{2(a-c)}{3b} \times \frac{2(a-c)}{3}=\frac{2(a-c)^2}{9b} \]となります。

企業の利益は、図の緑色の部分の長方形の面積です。

長方形の高さ(価格-限界費用)は、\(\frac{a+2c}{3}-c=\frac{a-c}{3}\)、ヨコの長さは\(\frac{2(a-c)}{3b}\)ですので、長方形の面積は\[\frac{a-c}{3}\times\frac{2(a-c)}{3b}=\frac{2(a-c)^2}{9b}\]となります。先に求めた企業の利益を合計した値(\(\pi_A+\pi_B\))と一致することがわかりますね。これを生産者余剰とも呼びます。

社会的総余剰は、消費者余剰と生産者余剰の総和です。したがって社会的総余剰は
\[\frac{2(a-c)^2}{9b}+\frac{2(a-c)^2}{9b}=\frac{4(a-c)^2}{9b}\]です。

オンライン講義

2020年東京都立大学「ゲーム理論1」オンライン講義(youtube):コロナ対応



クールノー競争とベルトラン競争入門(2):独占市場の価格・生産量と社会的総余剰

クールノー競争は、2社以上の企業が利益を最大化するように生産量を決める生産量競争です。その考え方の基本となるのは、企業が1社のときの独占市場の生産量決定です。1社のときが分からないで、2社以上の場合が分かることがあろうか。いやない。(反語)。ここでは独占市場において、生産量と価格がどのように決定されるかを示します。

独占市場の価格と生産量の決定:モデル

ここでは以下の例を考えます。

  • 企業Aがある製品を独占的に販売しているとし、その生産量\(x\)を決定するとしましょう。
  • 生産量\(x\)に対して、その価格\(p\)は$$p=a-bx$$で与えられるとします。
    • ここでは生産量=需要量(取引量)となるように価格が決定されるとします。すなわち在庫は考えず、すべての生産量が売り切るように価格がつくと考えます。
    • したがって、たくさん生産すると取引量は多いのですが、価格が下がり、儲かりません。価格を高くしようとすると少なく生産しなければならず、その生産量が少なすぎても儲かりません。すなわち、価格と生産量の間にトレードオフがあり、そのもとで、企業Aは生産量\(x\)を決定する問題を考えます。
    • なお「価格が\(p\)のとき、需要を\(x\)とすると、\(x=\alpha – \beta p\)となる」のように、需要関数が与えられる場合もあります。その場合は、 生産量=需要量(販売量)となることから、\(x\)を生産量と考えて、\(p=(\alpha/\beta)-(1/\beta)x\)のように\(p\)の式に変換すれば良いわけです。\(a=\alpha/\beta\)、\(1/\beta\)とおくと、上記の設定になります。
  • ここで製品を1単位売る費用(限界費用)は\(c\)とし一定とします。簡単にするため固定費は考えません。
  • 企業Aとは利益を最大にするように、この製品の生産量\(x\)を決定するとします。\(x\)はいくらになるでしょうか。

問題の解法

問題は以下のようにして解くことができます。

  • 企業Aの利益を\(\pi\)とおく。ここで(利益)=(収入)-(費用)であり、収入は(価格)\(\times\)(生産量)、費用は(限界費用)\(\times\)(生産量)となります。したがって$$\pi=px-cx$$となります。
  • この\(\pi\)を最大にする\(x\)を求めれば良いわけです。そこで \(p=a-bx\) を代入して\(x\)だけの式にすると\[ \begin{align} \pi &= px-cx \\ &=(a-bx)x-cx \\&=-bx^2+(a-c)x \end{align}\]となります。
  • この式を最大にする\(x\)を求めるには、ざっくり言うと\(x\)で微分して0になるところを求めれば良い。\(-bx^2+(a-c)x\)を \(x\)で微分すると、\(-2bx+(a-c)\)となります。したがって\[ -2bx+(a-c)=0 \]を解けば良く、これより\(x=\frac{a-c}{2b}\)が求める生産量(最適生産量)となります。
  • このときの価格は、\(p=a-bx^*=\frac{a+c}{2}\)となります。
  • このとき企業の利益は\[ \begin{align} \pi &= px-cx =(p-c)x \\ &=(
    \frac{a+c}{2}-c)(\frac{a-c}{2b})=\frac{(a-c)^2}{4b} \end{align}\] となります。

消費者余剰、社会的総余剰

独占市場における、消費者余剰、生産者余剰、社会的総余剰について示します。

上記で求めた独占市場の価格と生産量と企業の限界費用は、以下の図で示すことができます。

独占市場における消費者余剰・生産者余剰

消費者余剰は、図の青色で示された部分の三角形です。

(なぜこの部分が消費者余剰になるかは、ミクロ経済学のテキストなどを参照してください。なお拙著「ゼミナールゲーム理論入門」の5章にも、独占やクールノー競争での消費者余剰や社会的総余剰の数値例による初歩的な解説があります)。

三角形の底辺の長さは\(\frac{a-c}{2b}\)、高さは\[ a-\frac{a+c}{2}=\frac{a-c}{2} \]ですから、三角形の面積は\[ \frac{1}{2} \times\frac{a-c}{2b} \times \frac{a-c}{2}=\frac{(a-c)^2}{8b} \]となります。

企業の利益は、図の緑色の部分の長方形の面積です。

なぜかと言うと、製品1単位の利益は長方形の高さ(価格-限界費用)になり、これに長方形のヨコの長さ(取引量)をかけたものが利益となるからです。なお

長方形の高さ(価格-限界費用)は、\(\frac{a+c}{2}-c=\frac{a-c}{2}\)、ヨコの長さは\(\frac{a-c}{2b}\)ですので、長方形の面積は\[\frac{a-c}{2}\times\frac{a-c}{2}=\frac{(a-c)^2}{4b}\]となります。先に求めた値と一致しますね。これを企業の生産者余剰とも呼びます。

社会的総余剰は、消費者余剰と生産者余剰の総和です。したがって社会的総余剰は
\[\frac{(a-c)^2}{8b}+\frac{(a-c)^2}{4b}=\frac{3(a-c)^2}{8b}\]です。

オンライン講義

2020年東京都立大学「ゲーム理論1」オンライン講義(youtube):コロナ対応



クールノー競争とベルトラン競争入門(1):不完全競争市場

クールノー競争とベルトラン競争って何なのか?って、話から始めます。計算から行きたい人は独占市場の価格決定へ行くと良いでしょう。

完全競争市場と不完全競争市場

経済学では、最初に完全競争市場(perfectly competitive market)という市場を学びます。そこでは

  • 消費者や企業は多数いて、価格受容者(その行動によって価格が変化しない)
  • 企業は価格を所与とし、生産量を決めて、利益を最大化する
  • 企業は限界費用と価格が等しくなるように生産量を決める
  • 分析道具は、需要曲線と供給曲線 (部分均衡)で、需要曲線と供給曲線が交わったとこで価格と取引量が決まる

とされています。これは「古典的な」市場理論と言えるもので、経済学の考え方の基礎となります。農業なんかだとこの考えは当てはまるし(キャベツの生産者は、自分の生産によって、市場のキャベツの価格が変化するとは思わないでしょう)、経済学が作られた頃は企業とか今のようではなかったし、このように単純化すると経済の問題をシンプルに扱うことができるのでうれしいっす。しかし、

企業は価格を所与として、生産量を決めて、利益を最大化する

という部分は、現在の経済ではとても問題となります。実際に、現在の多くの市場では、企業は価格を所与だと考えているとは思わないでしょう。自分自身が価格を決めたり、もしくは自身の生産が価格に影響を及ぼすことを考慮したりして、意思決定をする場合が多いと思われます。

そこで近年の経済学の研究では、不完全競争市場(imperfectly competitive market)を考えることが多いです。これは企業の数が1つ(独占市場)だったり、2つ(複占市場)だったり、少数(寡占市場)だったりする市場です。ここでは企業を価格決定者であると考え、企業の行動によって価格が決まります。

企業が1つの独占市場の問題は簡単でしたが、2つ以上のときは企業の相互作用がどのように価格や生産量に影響を及ぼすかを考えなければなりません。このとき中心となるのはゲーム理論であり、これによって不完全競争市場は大きく発展し、産業組織論(政策が企業の行動にどのように影響を及ぼす考えたりする)国際経済学などの分野に大きく応用され、近年は経営戦略にも応用されるようになったのでした。

クールノー競争とベルトラン競争

ざっくりいうと、2社以上の企業の不完全競争市場を扱うモデルのうち、クールノー競争は企業が生産量を決定するモデル(生産量競争)で、ベルトラン競争は企業が価格を決定するモデル(価格競争)です。

クールノー競争:各企業は生産量を決定する(生産量競争)
ベルトラン競争:各企業は価格を決定する(価格競争)

このとき各企業が生産する財が同質財か、異質財か、でモデルが大きく分かれます。

同質財の市場と言うのは、すべての企業が生産する財が全く同じで、消費者は企業ごとの財の区別をしません。生産量競争では、全企業が生産した財の合計(=市場全体の生産量)によって財の価格が決まり、その価格はすべての企業の財の価格になると考えます。価格競争では、一番安い価格をつけた企業からすべての消費者は財を買うと考えます。各企業の財は1つの市場、1つの需要曲線で表現されます。

異質財の市場は製品が差別化された市場です。各企業ごとに別の市場があり、相手企業の価格や生産量は、自企業の製品の需要量に影響を及ぼしますが、その需要関数は各企業ごとに与えられます。

通常、クールノー競争と言うと同質財のクールノー競争を指します。これに対し、ベルトラン競争は同質財と異質財の両方を指すことが多いようです。

クールノー競争 vs ベルトラン競争

ゲーム理論では、各プレイヤーが行動するタイミングは、ゲームを決める重要な要素です。上記のモデルは、企業は、相手企業の価格や生産量を知らずに、自社の価格や生産量を決定すると考えています。言わば「同時に」決定すると考えています。

これに対して、各企業が逐次的に価格や生産量を決定するモデルもあります。2社の生産量競争で、1社が先に生産量を決定し(先手)、それを見てもう1社が生産量を決定するモデルはシュタッケルベルグ(Stackelberg)競争と呼ばれます。

クールノー競争:2社が同時に生産量を決める
シュタッケルベルグ競争:2社が先手と後手で逐次的に生産量を決める

2社が先手と後手で価格を決めるモデルもありますが、特に名前はついていません。
※経済学では特に名前はついていませんが、情報学やORなどでは最近、2人ゲームの先手と後手のあるゲームをすべて「シュタッケルベルグゲーム」と呼ぶことが多いです。

次は独占市場の価格・生産量と社会的総余剰へ。

賭けの分類

本サブサイトで扱う「賭け」は、通常考えられているギャンブルよりは広く捉えて、「金銭を利得とするゼロサムゲームである」と定義しました(賭け・ギャンブル・ゲームの定義)。ここでは「賭け」をいくつかに分類し、それを取り扱う学問分野について考えてみます。

不確実性があるか、ないか

このサイトでは賭けを「ゼロサムゲーム」であるとしましたが、一般に賭けとは「運や不確実性を伴って利得が変化するゲーム」と考えられるでしょう。このように不確実性があるか、ないか、は賭け・ギャンブル・ゲームを分類する最大の要素であると思います。

  • 不確実性がない賭け
    • 将棋、囲碁、オセロ etc...
  • 不確実性がある賭け
    • ブラックジャック、バカラ、スロットマシンなど、カジノにある遊戯
    • 麻雀、バックギャモン、ブリッジ、ポーカー
    • 競馬、宝くじ、競艇

不確実性がない賭けは、ここで「賭け」とは呼んでいるものの、一般には「ゲーム」と呼ばれることが多いでしょう。このような不確実性がない完全情報ゲーム(同時に行動することはなく、相手が何を選んだかがすべて分かるもの)は「組み合わせゲーム(combinatorial game)」や「game with no chance」などと呼ばれており、数学や計算機科学の分野で研究されています。ざっくり言うと「数学者が大好きな分野」です。参考となる書籍とページを以下に挙げておきます。

不確実性があるかないかで、学問分野は大きく分かれています。決定的な違いは「確率」が使われるかどうかです。両方を取り扱う研究者はあまりいません。なので、このサイトでは欲張って両方の話題を取り上げようと考えていますが、それでも不確実性がないゲームはやや専門外でもあり、話題は少なくなるでしょう。

これ以降では、一般に「賭け」や「ギャンブル」と言われる「不確実性のある賭け」についての分類を考えます。

不確実性のある賭けの分類(1):勝つチャンスと利得への関与

Ziemba, Brumell and Schwartz (1986) はギャンブルを2つの観点から計4種類に分類しています。1つ目の観点は、「勝つチャンスが完全に運によるか、技術を要するか」のどちらであるか。もう1つの観点は「勝利による利得が、完全に運に依存するもしくは定まっている(技術によって増減しない)か、技術によって利得が増加するか」です。表にすると以下のようになります。


ギャンブルの分類( Ziemba, Brumell and Schwartz (1986) )

宝くじもナンバーズも番号はランダムに出るので、勝つチャンスは完全に運に依存していて技術を要しません。ただし、一般の宝くじの賞金は技術を持ってしても増加しませんが(そもそも、ほとんどくじを選べない)、ナンバーズやロトは、自分が選ぶ番号によって賞金を変化させる可能性があります。したがって勝利による利得の分類は、宝くじとロト・ナンバーズでは異なると言えるでしょう。ブラックジャック、ポーカー、バカラ、競馬などは技術によって勝つチャンスも利得も増加する可能性があります。右下のセルに分類されるこれらのギャンブルが、私達が一般にギャンブルと呼ぶもののほとんどを包括しています。

利得も勝つチャンスもどちらも完全に運によるものであれば、それを分析する動機は少なくなるでしょう。本サイトで扱うのは、勝つチャンスか利得の少なくとも1つが技術により増加すると考えうるものでしょう。

不確実性がある賭けの分類(2):賭事(とじ)と博戯(ばくぎ)

wikipediaの「賭博」の項目では、大谷實『新版刑法講義各論[追補版]』(成文堂、2002年)533頁を参照して「賭ける対象となる勝負事の結果に当事者として関与できるかどうか」という視点から賭博を賭事(とじ)と博戯(ばくぎ)に分類しています。

賭博とは、賭事(とじ)と博戯(ばくぎ)の二つを合わせた言葉である。賭事と博戯の違いは、賭ける側の人間が、賭ける対象となる勝負事の結果に当事者として関与できるか否かである。

賭事(とじ) – 勝負事の結果に参加者が関与できないもの
博戯 – 勝負事の結果に参加者が関与できるもの

公営競技、「野球賭博」「富くじ(宝くじ)」「ルーレット」、「バカラ」などは賭事であり、「賭け麻雀」「賭けゴルフ」「賭けポーカー」などは博戯である。「クラップス」のように、一つのゲームで賭事と博戯が混在[3]する場合もある。

wikipedia「賭博」の項から

この「勝負事の結果に参加者が関与できる」ということと、(1)の「勝つチャンスや運が技術により増加する」ということは、かなり近い概念ですが、違いはあります。競馬を考えてみましょう。(1)のZeimba達の分類では、競馬はどの馬に賭けるかによって、賭けた者の当たる確率や利得を変化させることができます。(2)の分類では、競馬の結果には参加者は関与できないので、博戯になるのでしょう。

不確実性がある賭けの分類 (3):参加者の人数

他の文献には見当たりませんが、参加者が多数か少数かは、賭けを分類するのに重要な要素であると私は考えています。

カジノなどで扱われる賭け、ブラックジャック、ルーレット、バカラなどは賭けの参加者が比較的少数です。このような問題は、確率や統計などの数学、心理学や意思決定論などがそれを取り扱う学問分野になるでしょう。

これに対し競馬などは、賭けの参加者が多数です。これを取り扱うには経済学で考える「市場」の概念が必要であると考えています。経済学・ファイナンス・金融工学などがこれを取り扱う学問分野になるのではないでしょうか。もちろん、参加者が少数である賭けを取り扱う確率や統計などの数学、心理学も必要となるため、もっとも複雑でエキサイティングな分野ではないでしょうか。本サイトでも、この分野を取り扱うことが多くなると思います。

不確実性がある賭けの分類(4):主催者・胴元は賭けをするか?

「賭け」にはたいてい主催者がいて、それを「胴元」などと呼んだりします。カジノの主催者はオーナーで、日本の中央競馬ではJRAです(もっともJRAは執行機関であり、本当の主催者は国であるともいえますが)。宝くじの場合には、みずほ銀行を主催者と考えるよりは、自治体などを主催者と考えたほうが良いでしょう。多くの場合、法律で公認のギャンブルは公営で、ギャンブルの主催者は公的機関であったりします。

主催者の収入が運に依存するかどうか、言い換えると主催者自身がギャンブルをするかどうかは賭けを分類する重要な要因です。多くのギャンブルの主催者が公的機関であることを考えると、公的な収入が運に左右されるかどうかに対応するので、これは経済学的にも政策的にも重要な問題です。

カジノにおける多くのギャンブルでは、主催者の収入も運に依存します。例としてルーレットを考えてみましょう。アメリカンルーレットの場合、数字の数は0と00を含めて38個で、1つの数字に賭けて当たった場合の払い戻し倍率は36倍です。仮に全員が(「赤」[黒」とか「奇数」「偶数」のような賭け方ではなく)1つの数字に賭けるような賭け方をすれば、主催者の期待収入は
賭けられた金額×(38分の2)
となります。しかし、これはあくまでも期待値で、確実な収入ではありません。たまたま、参加者がルーレットの数字を次々に当てた場合は、主催者収入はマイナスになります。主催者の収入が、参加者と同様にルーレットの目に左右される点では、主催者も賭けをしていると考えられるでしょう。

カジノに対して、宝くじや日本の競馬はパリマチュアル(parimutuel)方式と呼ばれ、賭けられたお金から一定の額を控除した後、勝者にお金を配分するという方法をとっています。このような方式では主催者の収入は賭けられた金額で確定し、運には左右されません。例として、日本の競馬を考えてみましょう。日本の中央競馬では、賭けられたお金の(約)25%を主催者が控除した後、その金額を勝者に配分することになっています。主催者の収入は
                 賭けられた金額×25%
となります。ルーレットと異なる点は、これは確実な収入であり、本命が来ようが、穴馬が来ようが、どの馬が1着になったかには関係なく、主催者の収入は賭けられたお金にのみ依存します。ルーレットでは、主催者の収入が出た目に依存するのとは対照的に、この場合は、主催者は賭けはしていません。

ルーレットの38分の2も、日本の競馬の25%も、主催者の控除率と呼ばれるものですが、その内容は、このように少し異なります。

主催者が賭けをする方式でも、回数が多くなれば「大数の法則」に従って、収入は期待金額に近づくことが予想されます。したがって、この場合は賭けの回数が多くなることが主催者の収入を安定させるためには大切です。ルーレットにおいて、賭けられるお金の総額が1億円のときに、1億円が1回かけられるのと、100円が1万回賭けられるのでは、後者のほうが主催者には好ましく(リスクが少なく)なります。日本の競馬のようにパリマチュアルシステムでは、この2つに差はありません。

なお、日本の競馬と異なり、イギリスの競馬ではブックメーカー方式と呼ばれる主催者自身が賭けをする形もとられています。

賭け・ギャンブル・ゲームの定義(本サイトにおける)

ナッシュ均衡を理解する演習

利得行列や数式を用いずにナッシュ均衡を理解する

ゲーム理論の解はナッシュ均衡こちらで説明)です。「ゲーム理論が少し分かった!」と思えるためには、ナッシュ均衡が理解できていなければなりません。しかし、よくあるゲーム理論の教え方では、ナッシュ均衡は利得行列を使って説明され、プレイヤーの利得が数式や数値や表で与えられて、それを機械的に計算しナッシュ均衡を求める人が多い気がしています。

利得行列からナッシュ均衡を求める方法はこちら(ナッシュ均衡の求め方:2人ゲームの利得行列の場合)。

しかし、それで正しくナッシュ均衡の概念が理解できたと考えられるでしょうか?(いやない、反語)。ここでは、数式や表を用いない例題でナッシュ均衡を理解していきましょう。

まずナッシュ均衡の定義をおさらいしましょう。ナッシュ均衡とは、

どのプレイヤーも、他のプレイヤーがそのナッシュ均衡の戦略を選んでいるならば、自分はそのナッシュ均衡の戦略を選ぶことが利得がもっとも高くなる。

です。つまり、

どのプレイヤーも、他のプレイヤーがそのナッシュ均衡の戦略を選んでいるならば、自分はそのナッシュ均衡の戦略以外を選ぶと、利得が同じか低くなる(高くなることはない)

ということです。この「同じか低くなる」と言うのは1つのポイントです。相手の戦略に対し、利得が最大になる戦略が1つならば「低くなる」で良いのですが、最大となる戦略が<同点>で2つ以上あるときは、「低くなるか同じ」 です。

なお「利得が高くなる」とは、プレイヤーにとって「良い」とか「好ましい」ということです。

2人ゲームの例

2人ゲームで練習してみましょう。なお以下では確率で戦略を選ぶ「混合戦略」は考えません。

練習1:アリスと文太は、禅寺かショッピングモールへ行く。アリスは禅が好きで、文太の行動に関わらず禅寺のほうがショッピングモールより良いと考えている。その中でどちらに行っても、文太に会えないよりは会える方が良いと考えている。一方、文太はどちらに行くかより、アリスに会えることが大切である。そして、アリスに会えたなら、ショッピングモールのほうが禅寺よりもいい。アリスに会えないときも同じである。以下から、ナッシュ均衡を選べ。複数あるときはすべて選び、ないときは「なし」と答えよ。
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ、文太はショッピングモールへ行く
(C)アリスはショピングモールへ、文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

正解は(A)。(A)では、どちらのプレイヤーも、自分だけが行動を変えると利得が小さくなるのでナッシュ均衡です。(B)では文太は禅寺へ行ったほうが利得が高くなりますし、(C)と(D)では、アリスは禅寺へ行ったほうが利得が高くなります。したがってナッシュ均衡ではありません。

なお(C)で「文太はショッピングモールに行ったほうが利得が高くなるのでナッシュ均衡ではない」としても良いです。「ナッシュ均衡ではない」ことを示すには、選択を変えると利得が高くなるプレイヤーが1人でもいることを示せば良いので、アリスと文太の両方について言わなくても、どちらか1人で良いわけです。なお上記の場合、アリスにとって禅寺に行くことは支配戦略です。支配戦略がある場合は、ナッシュ均衡では必ずその戦略が選ばれます。

次はどうでしょうか?

練習2:アリスと文太は、禅寺かショッピングモールへ行く。アリスも文太も、お互いのことが大好きで、どちらに行くかよりも、相手に会えるほうが大切である。ただし、アリスは、会えたときも会えないときも、禅寺のほうがショピングモールよりも良く、文太はショッピングモールのほうが禅寺よりも良い。以下から、ナッシュ均衡を選べ。複数あるときはすべて選び、ないときは「なし」と答えよ。
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ、文太はショッピングモールへ行く
(C)アリスはショピングモールへ、文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

正解は(A)か(D)。2人が会えている(A)と(D)では、どちらか一方だけが行動を変えると、そのプレイヤーの利得が小さくなるのでナッシュ均衡です。(B)と(C)で、どちらか一方だけが行動を変えると、そのプレイヤーの利得が高くなるのでナッシュ均衡ではありません

さてさて、次はどうでしょうか?

練習3:アリスと文太は、禅寺かショッピングモールへ行く。アリスは文太が大好きで、どこに行くかよりも文太に会えることが大切。そして、その中で会えても会えなくても、禅寺のほうがショピングモールよりも良いと考えている。文太は残念ながらアリスが嫌いで、どこに行くかよりもアリスに会わないほうが会えるより絶対良いと考えている。その中で、会えたときも会えないときも、禅寺よりショピングモールのほうが良い。以下から、ナッシュ均衡を選べ。複数あるときはすべて選び、ないときは「なし」と答えよ。
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ、文太はショッピングモールへ行く
(C)アリスはショピングモールへ、文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

この場合はナッシュ均衡は「なし」です。2人が会えている(A)と(D)では、文太が行動を変えると会えなくなって利得が高くなり、2人が会えていない(B)と(C)では、アリスが行動を変えると高くなるので、どれもナッシュ均衡ではありません。(なおこのような場合も確率で戦略を選ぶ混合戦略を用いると、ナッシュ均衡がありますが、その場合は利得を数値で表さなければ確率が計算できません)。

3人以上のゲームの例

ナッシュ均衡についての理解が深まってきたでしょうか?それでは3人以上の例を考えて、練習してみましょう。まず簡単な「多数決」を考えてみましょう。

練習4:(奇数人での多数決) 5人で「海」か「山」を選ぶ。 多い人数が選んだ方を選ぶと勝ち、少ない人数が選んだ言葉を選ぶと負け。当然、勝つほうが負けるより良いとします。以下から、ナッシュ均衡を選べ。複数あるときはすべて選び、ないときは「なし」を選べ。
(A) なし
(B) 全員が「海」を選ぶ
(C) 4人が「海」、1人が「山」を選ぶ
(D) 3人が「海」、2人が「山」を選ぶ
(E) 2人が「海」、3人が「山」を選ぶ
(F) 1人が「海」、4人が「山」を選ぶ
(G) 全員が「山」を選ぶ

正解は(B)と(G)です。 全員が同じ言葉を選ぶ(B)と(G)では、どの人も他者の選択はそのままで自分の選択を変えると利得が低くなるので、ナッシュ均衡です。それ以外では、少数派になっているプレイヤーは、他者の選択がそのままのときに自分の選択だけを変えると多数派となり、利得が高くなるので、ナッシュ均衡ではありません。

では、次はどうでしょう。ライアーゲームの最初に出てくる「少数決」です。少数派になったほうが勝ちです。

練習5:(奇数人の少数決) 5人で「海」か「山」を選ぶ。少ない人数が選んだ方を選ぶと勝ちで、 多い人数が選んだ方を選ぶと負け。以下から、ナッシュ均衡を選べ。複数あるときはすべて選び、ないときは「なし」を選べ。
(A) なし
(B) 全員が「海」を選ぶ
(C) 4人が「海」、1人が「山」を選ぶ
(D) 3人が「海」、2人が「山」を選ぶ
(E) 2人が「海」、3人が「山」を選ぶ
(F) 1人が「海」、4人が「山」を選ぶ
(G) 全員が「山」を選ぶ

正解は(D)と(E)です。それ以外では、多数派になっている人は、自分だけの選択を変えると少数派となり利得が高くなりますので、ナッシュ均衡ではありません。

これに対し(D)と(E)では、すべてのプレイヤーが自分だけ選択を変えても利得が高くならない(同じか低くなる)のでナッシュ均衡です。なぜかと言うと、少数派となったプレイヤーは自分の選択を変えると多数派になり利得が下がりますし、多数派のプレイヤーは自分だけが選択を変えても、やはり多数派になってしまい(多数派が変わってしまいます)利得は同じになります。

もうお腹いっぱいでしょうかね?それでは、最後の問題です。

練習6:(7人じゃんけん)7人でじゃんけんをします。もちろんすべてのプレイヤーは、勝ち、あいこ、負けの順に良い(利得が高い)とします。
(A) なし
(B) 7人ともにグーを出す
(C) 3人がグー、4人がパーを出す
(D) 1人がグー、2人がパー、4人がチョキを出す
(E) 2人がグー、2人がパー、3人がチョキを出す
(F) 3人がグー、2人がパー、2人がチョキを出す

答えは(E)と(F)です!(B)「7人ともにグーを出す」や (C)「3人がグー、4人がパーを出す」では、グーの人がパーに変えることで負けから勝ちに転じて利得が高くなります。また(D)「1人がグー、2人がパー、4人がチョキ」では、グーの人がチョキに手を変えると、アイコから勝ちに転じて利得が高くなります。したがってナッシュ均衡ではありません。しかし(E)と(F)の場合は、どの人も自分だけが手を変えても、あいこからあいこになるだけで利得は高くなりません。したがって、(E)と(F)はナッシュ均衡です。

ナッシュ均衡(ざっくりした説明)

ここではまずナッシュ均衡について、ざっくり説明します。

  • ナッシュ均衡の求め方(2人ゲームの利得行列)はこちらのページで。
  • クールノー均衡はこっち。
  • 定義などは、また後ほど。

ナッシュ均衡とは

ゲーム理論におけるナッシュ均衡とは、ざっくりいうと

どのプレイヤーも、自分だけでは、それ以上利得が大きくできない状態

です。「状態」って言い方は不正確過ぎるか。もう少し正確に言うと、ナッシュ均衡とは

どのプレイヤーも、他のプレイヤーがそのナッシュ均衡の戦略を選んでいるもとでは、その戦略が一番利得が高くなる(他の戦略では利得が同じか低くなる)

ような戦略の組です。あんまり変わんないか。

ナッシュ均衡の例

例を挙げましょう(これは支配戦略を説明するときに用いた例の「客数」を変えたものです)。

2つのコンビニ、セレブ(セレブイレブン)とファミモ(ファミリーモール)が、まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている。コンビニを1日に利用する客はA駅が600人、B駅が750人である。セレブとファミモがもし違う駅を選べば、利用客を独占できる。しかし同じ駅に出店すると、ファミモが人気で、ファミモはセレブの2倍の客数を獲得できる。すなわち両方がA駅に出店すると、セレブ200人、ファミモ400人。B駅に出店すると、セレブ250人、ファミモ500人である。ここで客数を利得と考える。セレブとファミモはどちらの駅に出店するだろうか?

このゲームを利得行列で書くと下のようになります

ナッシュ均衡の例

例えば「セレブとファミモが共にA駅を選ぶこと」はナッシュ均衡ではありません。なぜならセレブは、ファミモがA駅を選んでいるなら、B駅に変えたほうが利得が高くなるからです。このように、他のプレイヤーの戦略が変わらないもとで、あるプレイヤーが選択を変えると利得が高くなるならば、その戦略の組はナッシュ均衡ではありません。

ナッシュ均衡ではない

これに対し、例えば「セレブがA駅、ファミモがB駅を選ぶこと」はナッシュ均衡です。なぜならセレブもファミモも、相手がそれを選んでいる限り、自分の利得をもっとも高くしているからです。つまりナッシュ均衡では、

どのプレイヤーも(相手がその戦略を選んでいるならば)、それ以上利得を高くできない (他の戦略では利得が同じか低くなる)

と言うことになります。

ナッシュ均衡である

ナッシュ均衡は2つ以上あるときもある

しかしこの例では「セレブがA駅、ファミモがB駅を選ぶこと」だけではなく、「セレブがB駅、ファミモがA駅を選ぶこと」 もナッシュ均衡になることが分かります。つまりナッシュ均衡は1つとは限らず、2つ以上ある場合もあります。このときどちらをゲーム理論の解とすべきかは難しい問題で、これは「均衡選択」と呼ばれる理論と「均衡精緻化」と呼ばれる理論で考えられています(2つの違いを説明するのはちょっと難しい)これはまた別の機会に。

ナッシュ均衡が複数あるゲームの代表例は、調整ゲームチキンゲームです。調整ゲームの記事では、どういうときにナッシュ均衡が実現しやすいかについても述べています。

ナッシュ均衡がなぜ解なのか

ナッシュ均衡以外が結果として予測されたとします。このとき、もしすべてのプレイヤーがその予測を知ったならば、少なくとも1人はその予測から違う行動を取ることで利得を高くすることができるはずです。そのプレイヤーは、ナッシュ均衡と違う行動を取るでしょうから、もはやその予測は当たりません。このことから、ゲームの結果の予測をプレイヤーが知っても結果が成り立つためには、その予測はナッシュ均衡でなければならないはずです。(「じゃんけんの必勝法と行動ファイナンス・行動経済学」も参考にしてください)

注意点と補足

  • すべてのプレイヤーが支配戦略を選んでいるときはナッシュ均衡になります。これはナッシュ均衡の特殊ケースと考えられます。したがって囚人のジレンマの結果もナッシュ均衡であると言えます。
  • 上記の点から考えると、じゃんけんにはナッシュ均衡がありませんが、確率を用いる「混合戦略」を考えるとナッシュ均衡が存在します。このような混合戦略まで考えると、すべてのn人有限ゲームにナッシュ均衡が存在します。この素晴らしい定理を誰が証明したかは、よく考えれば分かるはずである。これによって、その人はノーベル経済学賞を受賞しています。私ではありません。
  • ナッシュ均衡が分かったような気がしない?もう少し理解を深めたい?ではナッシュ均衡のおけいこ(1)で練習しましょう
  • 2人ゲームの利得行列でのナッシュ均衡の求め方はこちら
  • 混合戦略のナッシュ均衡の求め方
  • クールノー均衡はこっち

東京都立大学 2020ゲーム理論1 オンライン講義(2020:コロナ対応)

囚人のジレンマ

囚人のジレンマとは

囚人のジレンマは、ゲーム理論の中で、もっとも有名な例・モデルと言えるでしょう。
2人のプレイヤーが「協力するか」「協力しないか」を選ぶ問題で、以下の3つの条件が成立するときに、それは囚人のジレンマと呼ばれます。

(1)各プレイヤーは、相手が協力するならば、自分は協力しないほうが良い。
(2)各プレイヤーは、相手が協力しなくても、自分は協力しないほうが良い。
(3)しかし各プレイヤーは、2人が協力しないよりは、2人が協力したほうが良い。

(1)と(2)から、相手が何を選んでも自分は「協力する」より「協力しない」ほうが良いので、2人は協力しないことを選択します。しかしその結果が2人が協力することよりも悪くなっているために問題となるわけです。

ここで 「協力する」ことはゲーム理論では支配戦略と呼ばれます。支配戦略は、相手が何を選んでも、自分にとって他の選択より良い選択です。このことから支配戦略を選ぶことは自明のように思えるのですが、 囚人のジレンマを考えると支配戦略を選ぶことが必ずしも自明では思えなくなります。

囚人のジレンマの由来

この問題が囚人のジレンマと呼ばれるのは、タッカー(A. Tucker。カルーッシュ・クーン・タッカー条件(Karush-Kuhn-Tucker condition)のタッカーです)という数学者が上の状況を以下のようなストーリーで表現したことが由来であると言われています(以下はタッカーのオリジナルのストーリーとは違います)。

(囚人ジレンマ ストーリー)重罪を犯しているが、証拠が不十分なため軽微な罪で逮捕されている2人の囚人がいる。彼らは別々な部屋で取引を持ちかけられる「お前だけが重罪について自白すれば無罪にしてやる」。
 もし2人が黙秘を続けると、軽微な罪で懲役1年である。しかし1人が自白し、1人が黙秘をすると、自白した方は釈放、黙秘した方は(捜査に協力しないことで罪が重くなり)懲役10年。しかし両方が自白すると(重罪で)懲役5年になる。
 さて、あなたが囚人ならば自白したほうが良いか、黙秘したほうが良いか?

この状況を表にすると、以下のようになります。

囚人のジレンマ

先に述べた「協力すること」を「黙秘」に、「協力しないこと」を「自白」に置き換えると、囚人のジレンマの3条件に当てはまることが分かります。すなわち、

(1)各囚人は、相手が黙秘するなら、自分は自白するほうが良い。
(2)各囚人は、相手が自白するとしても、自分は自白するほうが良い。
(3)しかし各囚人は、2人が自白するよりは、2人が黙秘したほうが良い。

相手が黙秘しても自白しても、自分は黙秘するより自白するほうが良いので、2人は自白を選びます。しかし、その結果は2人が黙秘するよりも悪くなります。

囚人のジレンマの例

この問題が興味を持たれるのは、社会や経済や政治の問題にこのジレンマが多く現れるからです。例えば

  • 2国間の軍備拡張の問題。相手国が軍備拡張しない場合、自国だけが軍備拡張をすれば相手に外交上優位な立場に立てる。相手国が軍備拡張しない場合は、自分も拡張して追いつかなければ、相手に優位に立たれてしまう。しかし、両国とも拡張すると、拡張前と力のバランスは変わらず、ただ軍事費だけが増えてしまう(核兵器の問題にも同様な文脈が使われます)。
  • 安売りの問題。競争関係にある2店舗が、顧客を取り合うために、商品の価格を現状維持とするか、安売りをするかの問題。相手が現状維持の場合、自分だけが安売りをすれば顧客を奪い売上が増えるので、安売りをしたほうが良い。相手が安売りをしている場合、自分だけが現状維持をすると顧客を奪われ売上が減少するので、こちらも安売りをしたほうが良い。しかし両者が安売りをすると、顧客を奪うことはできず、価格の低下で売上だけが減ってしまう。

と言った現象です。なお安売りの問題は、安売りをしている企業にとっては問題ですが、消費者にとってはそれ以上に恩恵があります。市場の価格競争は、囚人のジレンマという構造を利用して消費者の厚生を高める仕組みだと言うこともできます。

囚人のジレンマの繰り返し

囚人のジレンマは、本来なら協力することが望ましい2人が協力しない方が良いという結果になってしまうジレンマです。これは、協力することをコミットするような契約(協力しなければ罰金を払うなど)を結ぶことで解決できる可能性がありますが、国家間の関係のように、このような契約を結ぶことが難しい場合もあります。このような場合、囚人のジレンマの状況は1回きりではなく、長期間に継続する問題でもあります。このような長期間に続く囚人のジレンマは、囚人のジレンマを何度も繰り返すようなゲームだと考え、繰り返しゲームという枠組みで分析されます。

注意点

囚人のジレンマを語るには、以下のことに注意する必要があります。

  • 2人ではなく3人以上の多人数版の囚人のジレンマは共有地の悲劇と呼ばれます。(3人以上でも、「囚人のジレンマ」と呼ばれることもありますが)。
  • 「2人が協力しない」というゲームの解を支配戦略ではなく、ナッシュ均衡であるとしている解説もあります。全員が支配戦略を選ぶことは、ナッシュ均衡の特殊ケースなので、そうしても間違いではありません。しかしナッシュ均衡より強い支配戦略として理解するほうが適切です。
  • 囚人のジレンマと言われている状況でも、3つの条件のうち、(2)について抜けている場合があります。例えば
    X先生と2人で教授会で口論になり、教授会の時間がどんどん長引いている。(1′)X先生が折れるなら、自分は折れるより折れないほうがいい。(2′)自分が折れるなら、X先生は折れるより折れないほうがいい。(3′)でも2人が折れないなら、教授会は長引くばかりで、それなら2人とも折れたほうがいい(まったくの、まったくのフィクションです)。
    一見すると条件が3つ揃ってるように見えますが、(1′)も(2′)も「相手が協力するなら、自分は協力しないほうが良い」という囚人のジレンマの条件(1)を2人のプレイヤーに分解して言い換えただけで、条件(2)(相手が折れないなら、自分は折れたほうが良いのか、折れないほうが良いのか)が特定されていません。もし「相手が折れないなら、自分は折れたほうがいい」ならば、これはチキンゲームです。

囚人のジレンマのブックガイド

  • 囚人のジレンマ--フォンノイマンとゲームの理論 (1995)、ウィリアム・パウンドストーン(著)、松浦俊輔(訳)、青土社、\2600、ISBN:4791753607。
    • まさに「囚人のジレンマ」をタイトルにした本だが、それのみではなくゲーム理論の歴史と逸話に、ゲーム理論の初歩的な考え方を絡めた読み物である、ゲーム理論とは何かを知る入門書としても面白い。囚人のジレンマの誕生や囚人のジレンマに関する多くの研究について知ることができる。キューバ危機ではノイマン自身が原子力安全委員会の委員長として、ソ連とアメリカの囚人のジレンマにどう対応したかなどが興味深く記されている。原著はW. Poundstone、 Prisonaer’s Dillemma (1992)、Doubleday。
  • つきあい方の科学―バクテリアから国際関係まで (1984)、R. アクセルロッド (著)、Robert Axelrod (原著)、松田 裕之 (翻訳)、Minerva21世紀ライブラリー(ミネルヴァ書房)、\2600、ISBN:4623029239。
    • 「囚人のジレンマ」の研究の中で、一般の人に有名で影響が強く、分かりやすいのはロバート・アクセエルロッドのコンピュータプログラムどうしのトーナメントによる実験であろう。この本は、その詳細をな結果や経緯をもとに、囚人のジレンマ研究のビジネスへの応用が解かれている。
  • 信頼の構造--こころと社会の進化ゲーム (1998)、山岸敏男(著)、東京大学出版会、\3200、ISBN:413011086
    • 社会心理学の立場から実験やゲーム理論の成果などをふまえて囚人のジレンマや社会的ジレンマがどのように起こり、どのように解決されるかの要因を探り、分かりやすく解説した本。馴れ合いや安易な集団主義に警告を発し、真の信頼関係を築くために何が必要なのかを語る。出版当時は、これからの日本がどうあるべきかを示唆すると共に実験経済学などの方面を踏まえて、これからのゲーム理論がどのように進むべきかも考えさせられた。
  • 社会的ジレンマ--環境破壊からいじめまで(2000)、山岸敏男(著)、PHP新書、\660、ISBN:4569611745
    • 前述の本が社会的ジレンマ研究のサーベイや実験経過などを理論的に解説する研究者向けの本であるのに対して、同著者のこの本は社会的ジレンマとその解決を一般向けに解説した本であった。
  • 対立と協調の科学-エージェント・ベース・モデルによる複雑系の解明 (2003)、ロバート・アクセルロッド (著)、寺野 隆雄 (翻訳)、ダイヤモンド社、\3800、ISBN:447819047X ロバート・アクセルロッド最新刊 

支配戦略

支配戦略とは

戦略形ゲームにおいては、各プレイヤーがどの戦略(選択、行動、代替案)を選ぶかを決めることが分析の主たる目的となります。

このとき1人のプレイヤーに対して

自分以外のプレイヤーが何を選んでも、自分の他の戦略よりも良い戦略(利得を高くする戦略)

があれば、その戦略を(そのプレイヤーの)支配戦略と呼びます。
プレイヤーに支配戦略があれば、そのプレイヤーはその支配戦略を選ぶと考えます。

支配戦略の例

例を挙げましょう。

支配戦略の例(コンビニ戦争2):2つのコンビニ、セレブ(セレブイレブン)とファミモ(ファミリーモール)が、まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている。コンビニを1日に利用する客はA駅が1200人、B駅が300人である。セレブとファミモがもし違う駅を選べば、利用客を独占できる。しかし同じ駅に出店すると、ファミモが人気で、ファミモはセレブの2倍の客数を獲得できる。すなわち両方がA駅に出店すると、セレブ400人、ファミモ800人。B駅に出店すると、セレブ100人、ファミモ200人である。ここで客数を利得と考える。セレブとファミモはどちらの駅に出店するだろうか?

ゲーム理論を持ち出すまでもなく、ちょっと考えるとセレブもファミモもA駅を選ぶことが分かるでしょう。B駅を独占しても高々300人ですからね。でも最初はこの例から始めましょう。

このゲームを利得行列で書くと下のようになります。

コンビニ戦争2

このときセレブの視点に立ってみましょう。セレブは

  • ファミモがA駅を選ぶならB駅(300)よりA駅(400)を選ぶほうが良い。
  • セレブは、ファミモがB駅を選んでも B駅(100)よりA駅(1200)を選ぶほうが良い。

と言うことが分かります。セレブは、ファミモが何を選んでも、B駅よりはA駅の方が良い戦略です。したがってA駅はセレブの支配戦略です(以下の図)。

セレブの支配戦略

同様に ファミモの視点に立って考えてみます。

ファミモの支配戦略

セレブは、ファミモが何を選んでも、B駅よりはA駅の方が良い戦略です。したがってA駅はセレブの支配戦略です。

もしすべてのプレイヤーに支配戦略があれば、すべてのプレイヤーが支配戦略を選ぶことがゲームの答となり、そのゲームは解けたことになると言えるでしょう。今回の例では、セレブもファミモも支配戦略はA駅でしたから、両方ともA駅を選ぶと予測でき、ゲームは解けたことになります。

支配戦略はゲーム理論における「強い解」

支配戦略は、相手の選択に関わらず、自分にとって他の選択より良いような選択がある場合です。このときプレイヤーは、相手や自分にとっての知識が完全でなくても行動を確定することができます。例えば、

(禅が好きなアリス)アリスと文太は、それぞれ禅寺に行くか、ショッピングセンターに行くか悩んでいる。アリスはとにかく禅寺に行きたいので、文太が禅寺に行っても行かなくても、ショッピングセンターよりは禅寺がいい。

この場合、アリスにとって禅寺に行くことが支配戦略になり、アリスは禅寺に行くことが確定します(だから「悩んでいる」って問題設定はおかしいんだけど)。しかも

  • 文太の利得は全く分かっていない。つまりプレイヤーに支配戦略があれば、相手の行動どころか、利得さえ分からなくても、そのプレイヤーの行動は確定する。
  • アリスも結果に対する好みがすべて確定しているわけではない。例えば「文太と一緒に禅寺に行くこと」と「アリスだけが禅寺に行き、文太はショッピングセンターに行くこと」のどちらが良いかは問題には定められていない(文太が好きなのか、嫌いなのか?)。つまりプレイヤーは、相手の選択それぞれに対する自分の好みだけが分かっていれば行動は確定する。

ということになります。つまり支配戦略があれば、細かい情報はなくてもプレイヤーはそれを選ぶことになります。このことは、支配戦略によるプレイヤーの行動の予測は、かなり確かなものになっているということで、支配戦略がないゲーム(その解はナッシュ均衡)よりも、より確からしい予測を与えているということになります。

  • 「禅が好きなアリス」は文太の好みが分からないと、文太が何を選ぶかは分からない。この例の続きは(未完)。
  • 支配戦略がない場合は、ゲームの解としてはナッシュ均衡を考えることになる。

このように支配戦略があればゲームの解は自明なように思えますが、必ずしもそうではないように見えるゲームがあります。それが囚人のジレンマであり、共有地の悲劇です。