「ゲーム理論のトリセツ」という記事を書きました

OR学会機関誌「オペレーションズ・リサーチ」2024年4月号の特集「エンジニアリングのためのゲーム理論」に「ゲーム理論のトリセツ」という記事を書きました。

また、Chat GPTを使いながら私が編集した小島武仁先生の講演録「社会の「ゲームのルール」を科学する―マーケットデザインの理論と実践―」も掲載されています。(1年間は学会員限定です)

サッカーのPK戦をゲーム理論で考える

フットボール批評という雑誌に、私のインタビュー記事が掲載されました。サッカーのPK戦をゲーム理論から見ると言うものです。

フットボール批評issue39(アマゾンへのリンク)

私の本などで紹介しているPK戦の混合戦略の話(例えばこちら)と、Ignacio palacious-Huerta (2003)のヨーロッパリーグでの実証研究 “Professionals Play Minmax”などを紹介しました。

フットボール批評という雑誌は、その前身のサッカー批評という雑誌から数えると20年近く続いている雑誌だそうですが、今号をもって休刊となるそうです。複雑な気持ちです。

篠原じゃんけんとその解

篠原さんというゲームデザイナーの方が発案した「よくばりじゃんけん(または、篠原じゃんけん)という面白いじゃんけんがあるそうです。

知らなきゃ損する? ボードゲームに欠かせない「ゲーマーじゃんけん」と「よくばりじゃんけん」のルール

そのナッシュ均衡を一橋大学の宇井先生が求めています。以下に、宇井先生の原稿があります(篠原じゃんけんの説明も、その中にあります)

「よくばりじゃんけん」の分析

宇井先生の求め方は秀逸です。このじゃんけんは、グーを出すと、それによって脱落する人が出て人数が変わるため、普通は再帰的にしか求められないのですが、宇井先生は混合戦略均衡の性質と対称性をうまく利用して、きれいに解かれています。

多人数で勝者を決定するじゃんけんには「わたなべじゃんけん」がありますが、「生き残るかどうか!」というゲーム性と面白さは、さすがゲームデザイナー!ですね。

「高校生のためのゲーム理論入門」の動画公開です

昨年(2021年)の10月に東京都立大学のオープンユニバーシティで講義した「高校生のためのゲーム理論入門」(高校生のための大学授業体験シリーズ)の動画が、東京都立大学のホームページ内でOCWとして公開されることになりました!

2021年度東京都立大学オープンユニバーシティ・高校生のための大学授業体験シリーズ 高校生のためのゲーム理論入門

他のゲーム理論講義動画とともにどうぞ

高校生のゲーム理論研究:八王子東高校「探究学習」の成果発表会に行ってきました!

2021年度は筑波大附属高校の他に、八王子東高校でも「探究学習」のゲーム理論プロジェクトのお手伝いをしました。3月12日(2022年)には、その成果発表会があり、参加させて頂きました。

当日はゲーム理論だけではなく、物理化学、生物、哲学、心理学、スポーツ、ジェンダーなど、さまざまなプロジェクトのすべての成果が発表されていました。多くの会場で同時並行的に発表会が行われ、さながら学園祭のようでした。

成果発表会のプログラム

生徒たちの間に実行委員があり、発表会が行われるようです。すごい!(委員長と副委員長の開会と閉会の挨拶も素晴らしかったです)。

教室での発表の様子

ゲーム理論プロジェクト発表は、主に体育館のポスターセッションでした。発表数も多く、ゲーム理論プロジェクトだけでも、全部を聞けなくて残念でした。

体育館での発表

以下は研究テーマの例です。

  • 親子のお手伝いから考える努力に対する報酬のインセンティブ
  • ブラフはどのような場面で成功するのか
  • Eカードにおける最良の選択は何か
  • チキンゲームで考える恋愛必勝法
ポスターセッション!
ブラフの有効性

今回のゲーム理論プロジェクトは高校1年生の発表でした。ゲーム理論は高校1年生には少し難しいかなとも思たのですが、皆さん、私の「ビジュアルゲーム理論」を参考書にし、よく勉強して、素晴らしい成果を発表していました。⇒アマゾン

ビジュアルゲーム理論

今回の探究学習のお手伝いを通じて、混合戦略などを、どのように高校生に教えればよいか、考えさせられました。高校生を主にターゲットにしながら、ゲーム理論を面白く教えるような教材を作っていきたいと思うようになりました。

筑波大附属高校で「総合的な探究の時間」のお手伝い

筑波大学附属高校で「総合的な探究の時間」のお手伝いをしてきました。高校1年生の「数学的モデリング」をテーマにしたグループで、ゲーム理論の講演をしたり、彼らの研究に助言を与えたりしました。

講演の様子

生徒たちは、ゲーム理論を中心に、自分の興味がある研究テーマに取り組みます。微分も確率もほとんど習っていない高校1年生とは思えないほどの高度な研究に取り組んでいました。テーマの例を挙げると

  • 特殊ルール(手札のシャッフル)がある3人ババ抜きの戦略
  • 3人人狼の戦略とシミュレーション
  • ゲーム理論の観点からの交通渋滞の回避
  • LINEによる異性とのやり取りの戦略

です。また、特に高校生にとってはゲーム理論によるスポーツの戦略に興味があるようで

  • バスケットボールの戦略(3Pシュートと2Pシュートのどちらを打つべきか)
  • 野球の戦略(高校野球における初級ストライクを打つべきかどうか)
  • バレーボールの戦略(アタックはストレートかクロスか)
  • サッカーの戦略(ドリブルか、パスか)

などのテーマが多く見受けられました。

野球の戦略

スポーツの戦略と混合戦略については、いくつかの研究はあるものの、それを詳しく解説したものはありません。改めて、そのような解説を書いてみようかと思いました。

多くの学生のテーマに向き合い、短い時間でアドバイスを与える担当の山田先生は、本当に凄いなと思いました。学生たちの探求は、まだまだ続くようです。

NABENAVI.net 計算プロジェクト

戦略10以下の2人戦略形ゲームのナッシュ均衡を(混合戦略まで含めて)すべて計算するプログラムなど、趣味で作ったweb上の計算アプリケーションを提供しています。

部分ゲーム完全均衡(ざっくりとした説明)

部分ゲーム完全均衡について、ざっくりと説明します。

部分ゲーム完全均衡(Subgame Perfect Equilibrium, SPE)とは「ある点から後がゲーム(部分ゲーム)とみなせるときには、プレイヤーはそのゲームのナッシュ均衡を選んでいる」と考えるゲームの解です。

次のようなゲームを考えてみましょう。

このゲームは最初にプレイヤー1がYNかを選択。Nを選べば右上の戦略形ゲーム(同時ゲーム)に突入し、Nを選べばゲームは終了してプレイヤー1と2の利得が共に2となるゲームです。

このゲームの解はどうなると予想されるでしょう?プレイヤー1は最初の点で、Yを選んだときに、その結果がどうなるかを予想しなければなりません。右上の戦略形ゲームでは、ナッシュ均衡は(B,B)なので、プレイヤー1の利得は1になると予想されます。

このことからプレイヤー1は最初の点でYを選べば利得は1、Nを選べば利得は2になるのでNを選ぶと考えられます。部分ゲーム完全均衡は「プレイヤー1は最初の点でYを選び、次の戦略形ゲームでプレイヤー1と2は共にBを選ぶ」となります。

部分ゲーム完全均衡を正確に学ぶためには、(1)展開形ゲームはどのように書けて、それを戦略形ゲームに変換するにはどうするのか、(2)展開形ゲームにおいて、ある点から後をゲーム(部分ゲーム)とみなせるのはどういうときか、を学ぶ必要があります。それはまた今度にします。今はこちらの動画を参考にしてください。

部分ゲーム完全均衡はナッシュ均衡の1つ

部分ゲーム完全均衡はナッシュ均衡の1つ(精緻化されたもの)です。例を使って、(ボンヤリとですが)説明してみましょう。

次のゲームを考えます。

  • 最初にプレイヤー1がUDを選びます。Uを選べばゲームは終わり、プレイヤー1と2の利得は1と3になります。
  • プレイヤー1がDを選ぶと、プレイヤー2がLRを選びます。Lを選べばゲームプレイヤー1と2の利得は0と1、Rを選べばプレイヤー1と2の利得は共に2となります。

このゲームは、プレイヤー1がUDを選び、プレイヤー2がLRを選ぶ戦略形ゲーム(同時のゲーム)と考えることもできます。

ここで「交互にプレイする展開形ゲームを、同時にプレイする戦略形ゲームに変換できるのか?」という疑問があるかと思います。確かにそこが最大のポイントですね。確かにプレイヤー2は、プレイヤー1がDを選んだのを知ってから、LかRを選ぶわけです。しかし、プレイヤー2はゲームが始まる前に「もしプレイヤー1がDを選んだらどうするか」を決めておくことはできるはずです。またプレイヤー1は、「もしDを選んだらプレイヤー2はどうするか」を推測しなければ自分の選択を決めることができません。プレイヤー1の頭の中では、プレイヤー2がどうするかは、自分が選択をする前(ゲームが始まる前)に決まっていなければなりません。このように展開形ゲームでは「すべてのプレイが行われる前に、各プレイヤーはどの点で何が選ばれるかを決定しておく」として、戦略形ゲームとして考えることができるわけです。

この戦略形ゲームのナッシュ均衡は(U,L)(D,R)の2つです。

一方、このゲームの部分ゲーム完全均衡はどうなるでしょう。プレイヤー2が行動する点は部分ゲームと考えることができます。プレイヤー2はLを選べば利得1、Rを選べば利得2ですからRを選びます。このプレイヤー2の行動を推測すると、プレイヤー1はDを選びます。

均衡の精緻化

ナッシュ均衡がすべて、部分ゲーム完全均衡になるわけではありません。ここで、部分ゲーム完全均衡ではない(U,L)というナッシュ均衡が、どういうものかを考えてみましょう。図では以下のようになりますね。

このナッシュ均衡では、各プレイヤーが(U,L)が起こると予想しています。プレイヤー2は、プレイヤー1がUを選ぶと予想すれば、Lを選んでもRを選んでも利得は同じなので、Lを選んでも悪くはありません。そして、プレイヤー1は、プレイヤー2がLを選ぶと予想すれば、Uを選ぶことが最適です。したがって、この戦略の組は「すべてのプレイヤーにとって、相手がその戦略を選ぶならば、自分にとって最適な戦略を選んでいる」ようなナッシュ均衡になるのです。

確かにプレイヤー2は「プレイヤー1がUを選んだと予想したときは、Lを選んでもRを選んでも利得は同じ」です。しかし、このゲームは同時のゲームではありません。予想ではなく、実際にプレイヤー1がDを選んだ場合には、プレイヤー2は、もはやLを選ばずRを選ぶでしょう。

このように展開形ゲームを戦略形ゲームに変換すると、「プレイヤーが選択した行動の情報」を考慮せずに、プレイヤーの推測を考えることになってしまうように見えます(そう見えますが、本当にそうかどうかは、難しいところです)。

そのため、変換した戦略形ゲームのナッシュ均衡をそのまま解として考えると不完全で、展開形ゲームの構造を考慮して、ナッシュ均衡の中から適切でない解を除く必要があります。これを均衡の精緻化(equilibrium refinement)と呼びます。部分ゲーム完全均衡はナッシュ均衡の精緻化による解の1つです。

  • 部分ゲーム完全均衡は「ある点から後がゲーム(部分ゲーム)とみなせるときには、プレイヤーはそのゲームのナッシュ均衡を選んでいる」と考えるゲームの解
  • 部分ゲーム完全均衡はナッシュ均衡の1つ
  • ナッシュ均衡から、適切でない解を取り除き、解の候補を絞り込むことを均衡の精緻化と言う
  • 完全情報ゲームにおいては、部分ゲーム完全均衡はバックワードインダクションにいよる解になります。

東京都立大学 2020ゲーム理論1 オンライン講義(2020:コロナ対応)

グリコじゃんけんの正しい解

グリコ・チョコレート・パイナップルじゃんけんについて。このゲームは勝ちと負けしかないゲームなのに、ネットなどでは3点や6点の利得を割り当て誤って計算されている例が多いです。実は拙著「ゼミナールゲーム理論入門」でも、初心者向けにと思って、そのような得点を仮定して解を求めて見せているのですが、それがそのまま本当の答えだと捉えられている傾向があり、これを正すまでは死ねないと思って書きましたよ。ぜひ、見てください! ⇒ グリコ・チョコレート・パイナップルゲームのゲーム理論による解