クールノー競争とベルトラン競争入門(3):クールノー競争の価格・生産量と社会的総余剰

独占市場における価格と生産量の決定を理解したとして,ここでは2社のクールノー競争の価格と生産量の決定,および社会的総余剰の計算について説明します.

クールノー競争の価格と生産量の決定:モデル

ここでは同質財を販売している2社の生産量競争を考えます.一般にクールノー競争と呼ばれるのは,このモデルです(不完全競争市場の分類).

  • 企業AとBが同じ製品(同質財)を販売するとします.AとBの生産量をそれぞれ\(x_A,x_B\)とし,AとBは\(x_A,x_B\)を決定するとしましょう.
  • 市場全体の生産量を\(x=x_A+x_B\)に対して,その価格\(p\)は$$p=a-bx$$で与えられるとします.
  • ここで製品を1単位の費用(限界費用)はAもBも\(c\)で同じであり,生産量にかかわらず一定とします.簡単にするため固定費は考えません.
  • AとBは利益を最大にすると考えます.AとBは,生産量\(x_A,x_B\)をいくらにするでしょうか.

問題の解法

問題は以下のようにして解くことができます.

  • 企業Aの利益を\(\pi_A\)とおく.ここで(利益)=(収入)-(費用)であり,収入は(価格)\(\times\)(生産量),費用は(限界費用)\(\times\)(生産量)となります.したがって$$\pi_A=px_A-cx_A$$となります.
  • この\(\pi_A\)を最大にする\(x_A\)を考えます.そこで\(p=a-bx\)を代入し,さらに\(x=x_A+x_B\)に注意すると\[ \begin{align} \pi_A &= px_A-cx_A \\ &=(a-bx)x_A-cx_A \\&=
    \{a-b(x_A+x_B)\}x_A-cx_A\\&=-bx_A^2-bx_Ax_B+(a-c)x_A \tag{1} \end{align}\]となります.
  • この式(1)を最大にする\(x_A\)を求めるには,ざっくり言うと\(x_A\)で微分
    (正確には偏微分)して0になるところを求めれば良い.(1)を\(x_A\)で微分すると,\(-2bx_A-bx_B+(a-c)\)となります.したがって\[-2bx_A-bx_B+(a-c)=0\]を解けば良く,これより\[x_A=-\frac{1}{2}x_B+\frac{a-c}{2b} \tag{2}\]となります.
  • 式(2)は,企業Aの最適反応関数と呼ばれます.式(2)は\(x_B\)が与えられたときに企業Aの利益を最大にする企業Aの生産量を表しています.したがって,企業Bの生産量が決まれば,企業Aとの最適な生産量(答)が決まるのですが,企業Bの生産量がいくらになるか分かりません.そこで企業Bが利益を最大にする生産量を同様に求めてみます.
  • 企業Bの利益を\(\pi_B\)とおきます.$$\pi_B=px_B-cx_B$$であり,企業Aの場合と同様に\(p=a-bx\)を代入して計算し,$$\pi_B=-bx_B^2-bx_Ax_B+(a-c)x_B$$を得ます.さらに\(x_B\)で微分して0になるところを求めると,\[x_B=-\frac{1}{2}x_A+\frac{a-c}{2b} \tag{3}\]となります.
  • この式(3)は,企業Bの最適反応関数と呼ばれます.企業Aと同様に\(x_A\)が与えられたときに,企業Bの利益を最大にする企業Bの生産量を表しています.
  • ここで,企業Aは企業Bの生産量が分からなければ,利益を最大にする生産量が分からず,企業Bは企業Aの生産量が分からなければ,利益を最大にする生産量が分かりません.ここでゲーム理論のナッシュ均衡の概念により解を求めるわけです.ナッシュ均衡は,お互いが最適反応戦略を選び合うような戦略の組み合わせで,ここでは式(2)と式(3)を同時に満たす\(x_A\),\(x_B\)となります.
  • 式(2)と式(3)を同時に満たす\(x_A\),\(x_B\)は,これらを連立方程式で解くことによって求められます.式(3)の\(x_B\)を式(2)に代入して計算すると\(x_A=-\frac{1}{4}x_A+\frac{a-c}{4b}\)となり,これから\(x_A=\frac{a-c}{3b}\)を得ます.またこれを式(2)に代入して,\(x_B=\frac{a-c}{3b}\)を得ます.
    このときの価格は\[p=a-bx=a-b(x_A+x_B)=\frac{a+2c}{3} \]となります.
  • このとき企業Aの利益は\[ \begin{align} \pi_A &= px_A-cx_A =(p-c)x_A\\ &=\left(\frac{a+2c}{3}-c\right)\left(\frac{a-c}{3b}\right)=\frac{(a-c)^2}{9b} \end{align}\] となります.同様に企業Bの利益も同じになります.

まとめますと,クールノー競争における企業Aと企業Bの生産量は\(x_A=x_B=\frac{a-c}{3b}\)となります.これをクールノー均衡と呼びます.クールノー均衡における価格は\(p=\frac{a+2c}{3}\),各企業の利益は\(\pi_A=\pi_B=\frac{(a-c)^2}{9b}\)となります.

消費者余剰,社会的総余剰

独占市場における,消費者余剰,生産者余剰,社会的総余剰について示します.

市場全体の取引量が\(x=x_A+x_B=\frac{2(a-c)}{3b}\)であることに注意すると,上記で求めたクールノー競争の価格と生産量と企業の限界費用は,以下の図で示すことができます.

クールノー競争における生産量・価格・社会的総余剰

消費者余剰は,図の青色で示された部分の三角形です.

三角形の底辺の長さは\(\frac{2(a-c)}{3b}\),高さは\[ a-\frac{a+2c}{3}=\frac{2(a-c)}{3} \]ですから,三角形の面積は\[ \frac{1}{2} \times\frac{2(a-c)}{3b} \times \frac{2(a-c)}{3}=\frac{2(a-c)^2}{9b} \]となります.

企業の利益は,図の緑色の部分の長方形の面積です.

長方形の高さ(価格-限界費用)は,\(\frac{a+2c}{3}-c=\frac{a-c}{3}\),ヨコの長さは\(\frac{2(a-c)}{3b}\)ですので,長方形の面積は\[\frac{a-c}{3}\times\frac{2(a-c)}{3b}=\frac{2(a-c)^2}{9b}\]となります.先に求めた企業の利益を合計した値(\(\pi_A+\pi_B\))と一致することがわかりますね.これを生産者余剰とも呼びます.

社会的総余剰は,消費者余剰と生産者余剰の総和です.したがって社会的総余剰は
\[\frac{2(a-c)^2}{9b}+\frac{2(a-c)^2}{9b}=\frac{4(a-c)^2}{9b}\]です.

クールノー競争とベルトラン競争入門(2):独占市場の価格・生産量と社会的総余剰

クールノー競争は,2社以上の企業が利益を最大化するように生産量を決める生産量競争です.その考え方の基本となるのは,企業が1社のときの独占市場の生産量決定です.1社のときが分からないで,2社以上の場合が分かることがあろうか.いやない.(反語).ここでは独占市場において,生産量と価格がどのように決定されるかを示します.

独占市場の価格と生産量の決定:モデル

ここでは以下の例を考えます.

  • 企業Aがある製品を独占的に販売しているとし,その生産量\(x\)を決定するとしましょう.
  • 生産量\(x\)に対して,その価格\(p\)は$$p=a-bx$$で与えられるとします.
    • ここでは生産量=需要量(取引量)となるように価格が決定されるとします.すなわち在庫は考えず,すべての生産量が売り切るように価格がつくと考えます.
    • したがって,たくさん生産すると取引量は多いのですが,価格が下がり,儲かりません.価格を高くしようとすると少なく生産しなければならず,その生産量が少なすぎても儲かりません.すなわち,価格と生産量の間にトレードオフがあり,そのもとで,企業Aは生産量\(x\)を決定する問題を考えます.
    • なお「価格が\(p\)のとき,需要を\(x\)とすると,\(x=\alpha – \beta p\)となる」のように,需要関数が与えられる場合もあります.その場合は, 生産量=需要量(販売量)となることから,\(x\)を生産量と考えて,\(p=(\alpha/\beta)-(1/\beta)x\)のように\(p\)の式に変換すれば良いわけです.\(a=\alpha/\beta\),\(1/\beta\)とおくと,上記の設定になります.
  • ここで製品を1単位売る費用(限界費用)は\(c\)とし一定とします.簡単にするため固定費は考えません.
  • 企業Aとは利益を最大にするように,この製品の生産量\(x\)を決定するとします.\(x\)はいくらになるでしょうか.

問題の解法

問題は以下のようにして解くことができます.

  • 企業Aの利益を\(\pi\)とおく.ここで(利益)=(収入)-(費用)であり,収入は(価格)\(\times\)(生産量),費用は(限界費用)\(\times\)(生産量)となります.したがって$$\pi=px-cx$$となります.
  • この\(\pi\)を最大にする\(x\)を求めれば良いわけです.そこで \(p=a-bx\) を代入して\(x\)だけの式にすると\[ \begin{align} \pi &= px-cx \\ &=(a-bx)x-cx \\&=-bx^2+(a-c)x \end{align}\]となります.
  • この式を最大にする\(x\)を求めるには,ざっくり言うと\(x\)で微分して0になるところを求めれば良い.\(-bx^2+(a-c)x\)を \(x\)で微分すると,\(-2bx+(a-c)\)となります.したがって\[ -2bx+(a-c)=0 \]を解けば良く,これより\(x=\frac{a-c}{2b}\)が求める生産量(最適生産量)となります.
  • このときの価格は,\(p=a-bx^*=\frac{a+c}{2}\)となります.
  • このとき企業の利益は\[ \begin{align} \pi &= px-cx =(p-c)x \\ &=(
    \frac{a+c}{2}-c)(\frac{a-c}{2b})=\frac{(a-c)^2}{4b} \end{align}\] となります.

消費者余剰,社会的総余剰

独占市場における,消費者余剰,生産者余剰,社会的総余剰について示します.

上記で求めた独占市場の価格と生産量と企業の限界費用は,以下の図で示すことができます.

独占市場における消費者余剰・生産者余剰

消費者余剰は,図の青色で示された部分の三角形です.

(なぜこの部分が消費者余剰になるかは,ミクロ経済学のテキストなどを参照してください.なお拙著「ゼミナールゲーム理論入門」の5章にも,独占やクールノー競争での消費者余剰や社会的総余剰の数値例による初歩的な解説があります).

三角形の底辺の長さは\(\frac{a-c}{2b}\),高さは\[ a-\frac{a+c}{2}=\frac{a-c}{2} \]ですから,三角形の面積は\[ \frac{1}{2} \times\frac{a-c}{2b} \times \frac{a-c}{2}=\frac{(a-c)^2}{8b} \]となります.

企業の利益は,図の緑色の部分の長方形の面積です.

なぜかと言うと,製品1単位の利益は長方形の高さ(価格-限界費用)になり,これに長方形のヨコの長さ(取引量)をかけたものが利益となるからです.なお

長方形の高さ(価格-限界費用)は,\(\frac{a+c}{2}-c=\frac{a-c}{2}\),ヨコの長さは\(\frac{a-c}{2b}\)ですので,長方形の面積は\[\frac{a-c}{2}\times\frac{a-c}{2}=\frac{(a-c)^2}{4b}\]となります.先に求めた値と一致しますね.これを企業の生産者余剰とも呼びます.

社会的総余剰は,消費者余剰と生産者余剰の総和です.したがって社会的総余剰は
\[\frac{(a-c)^2}{8b}+\frac{(a-c)^2}{4b}=\frac{3(a-c)^2}{8b}\]です.

クールノー競争とベルトラン競争入門(1):不完全競争市場

クールノー競争とベルトラン競争って何なのか?って,話から始めます.計算から行きたい人は独占市場の価格決定へ行くと良いでしょう.

完全競争市場と不完全競争市場

経済学では,最初に完全競争市場(perfectly competitive market)という市場を学びます.そこでは

  • 消費者や企業は多数いて,価格受容者(その行動によって価格が変化しない)
  • 企業は価格を所与とし,生産量を決めて,利益を最大化する
  • 企業は限界費用と価格が等しくなるように生産量を決める
  • 分析道具は,需要曲線と供給曲線 (部分均衡)で,需要曲線と供給曲線が交わったとこで価格と取引量が決まる

とされています.これは「古典的な」市場理論と言えるもので,経済学の考え方の基礎となります.農業なんかだとこの考えは当てはまるし(キャベツの生産者は,自分の生産によって,市場のキャベツの価格が変化するとは思わないでしょう),経済学が作られた頃は企業とか今のようではなかったし,このように単純化すると経済の問題をシンプルに扱うことができるのでうれしいっす.しかし,

企業は価格を所与として,生産量を決めて,利益を最大化する

という部分は,現在の経済ではとても問題となります.実際に,現在の多くの市場では,企業は価格を所与だと考えているとは思わないでしょう.自分自身が価格を決めたり,もしくは自身の生産が価格に影響を及ぼすことを考慮したりして,意思決定をする場合が多いと思われます.

そこで近年の経済学の研究では,不完全競争市場(imperfectly competitive market)を考えることが多いです.これは企業の数が1つ(独占市場)だったり,2つ(複占市場)だったり,少数(寡占市場)だったりする市場です.ここでは企業を価格決定者であると考え,企業の行動によって価格が決まります.

企業が1つの独占市場の問題は簡単でしたが,2つ以上のときは企業の相互作用がどのように価格や生産量に影響を及ぼすかを考えなければなりません.このとき中心となるのはゲーム理論であり,これによって不完全競争市場は大きく発展し,産業組織論(政策が企業の行動にどのように影響を及ぼす考えたりする)国際経済学などの分野に大きく応用され,近年は経営戦略にも応用されるようになったのでした.

クールノー競争とベルトラン競争

ざっくりいうと,2社以上の企業の不完全競争市場を扱うモデルのうち,クールノー競争は企業が生産量を決定するモデル(生産量競争)で,ベルトラン競争は企業が価格を決定するモデル(価格競争)です.

クールノー競争:各企業は生産量を決定する(生産量競争)
ベルトラン競争:各企業は価格を決定する(価格競争)

このとき各企業が生産する財が同質財か,異質財か,でモデルが大きく分かれます.

同質財の市場と言うのは,すべての企業が生産する財が全く同じで,消費者は企業ごとの財の区別をしません.生産量競争では,全企業が生産した財の合計(=市場全体の生産量)によって財の価格が決まり,その価格はすべての企業の財の価格になると考えます.価格競争では,一番安い価格をつけた企業からすべての消費者は財を買うと考えます.各企業の財は1つの市場,1つの需要曲線で表現されます.

異質財の市場は製品が差別化された市場です.各企業ごとに別の市場があり,相手企業の価格や生産量は,自企業の製品の需要量に影響を及ぼしますが,その需要関数は各企業ごとに与えられます.

通常,クールノー競争と言うと同質財のクールノー競争を指します.これに対し,ベルトラン競争は同質財と異質財の両方を指すことが多いようです.

クールノー競争 vs ベルトラン競争

ゲーム理論では,各プレイヤーが行動するタイミングは,ゲームを決める重要な要素です.上記のモデルは,企業は,相手企業の価格や生産量を知らずに,自社の価格や生産量を決定すると考えています.言わば「同時に」決定すると考えています.

これに対して,各企業が逐次的に価格や生産量を決定するモデルもあります.2社の生産量競争で,1社が先に生産量を決定し(先手),それを見てもう1社が生産量を決定するモデルはシュタッケルベルグ(Stackelberg)競争と呼ばれます.

クールノー競争:2社が同時に生産量を決める
シュタッケルベルグ競争:2社が先手と後手で逐次的に生産量を決める

2社が先手と後手で価格を決めるモデルもありますが,特に名前はついていません.

次は独占市場の価格・生産量と社会的総余剰へ.

ナッシュ均衡のおけいこ(1)

利得行列や数式を用いずナッシュ均衡を理解する

ゲーム理論の解はナッシュ均衡(詳しくはこちらで説明しました)「ゲーム理論が分かった!」と思えるためには,ナッシュ均衡が理解できていなければなりません.でもよく見るゲーム理論入門では,ナッシュ均衡は利得行列を使って説明されるので,プレイヤーの利得が数式や数値で表されていたり,少なくとも表で与えられてなければ,ナッシュ均衡が求められないような気がします.しかし,それは正しいナッシュ均衡の理解ではありませんね.ここでは,数式や表を用いないでいくつかの問題を考え,ナッシュ均衡を理解していきましょう.

まずナッシュ均衡の定義をおさらいしましょう.ナッシュ均衡とは,

どのプレイヤーも,他のプレイヤーがそのナッシュ均衡の戦略を選んでいるならば,自分はそのナッシュ均衡の戦略を選ぶことが利得がもっとも高くなる.

です.つまり,

どのプレイヤーも,他のプレイヤーがそのナッシュ均衡の戦略を選んでいるならば,自分はそのナッシュ均衡の戦略以外を選ぶと,利得が同じか低くなる(高くなることはない)

ということです.この「同じか低くなる」と言うのは1つのポイントですね.相手の戦略に対して利得が最大になる戦略が1つならば「低くなる」でいいのですが,最大になる戦略が<同点>で2つ以上あるときは, 他の戦略でも利得は低くなるとは限らず,同点になることもあります.

ここで「利得が高くなる」と言うのは,プレイヤーにとって「良い」とか「好ましい」ということです.

2人ゲームの例

2人ゲームで練習してみましょう.なお以下では確率で戦略を選ぶ「混合戦略」は考えません.

練習1:アリスと文太は,禅寺かショッピングモールへ行く.アリスは文太の行動に関わらず禅寺に行くほうが,ショッピングモールに行くよりも絶対に良いと考えている.その中でどちらに行ったときも,どちらかと言えば文太に会えないよりは会える方が良いと考えている.文太はどちらに行くかよりも,アリスに会えることが会えないことより絶対に良いと考えている.その中で会えたときも会えないときも,どちらかと言えばショッピングモールのほうが禅寺よりも良い.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」と答えよ.
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ,文太はショッピングモールへ行く
(C)アリスはショピングモールへ,文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

正解は(A).(A)では,どちらのプレイヤーも,自分だけが行動を変えると利得が小さくなるのでナッシュ均衡です.(B)では文太は禅寺へ行ったほうが利得が高くなりますし,(C)と(D)では,アリスは禅寺へ行ったほうが利得が高くなります.したがってナッシュ均衡ではありません.

なお(C)で「文太はショッピングモールに行ったほうが利得が高くなるのでナッシュ均衡ではない」としても良いです.「ナッシュ均衡ではない」ことを示すには,選択を変えると利得が高くなるプレイヤーが1人でもいることを示せば良いので,アリスと文太の両方について言わなくても,どちらか1人で良いわけです.なお上記の場合,アリスにとって禅寺に行くことは支配戦略です.支配戦略がある場合は,ナッシュ均衡では必ずその戦略が選ばれるはずです.

次はどうでしょうか?

練習2:アリスと文太は,禅寺かショッピングモールへ行く.アリスも文太もどちらに行くかよりも,相手に会えるほうが会えない方が大切で,それが絶対良いと考えている.その中でアリスは,会えたときも会えないときも,禅寺のほうがショピングモールよりも良く,文太はショッピングモールのほうが禅寺よりも良い.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」と答えよ.
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ,文太はショッピングモールへ行く
(C)アリスはショピングモールへ,文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

正解は(A)か(D).2人が会えている(A)と(D)では,どちらか一方だけが行動を変えると,そのプレイヤーの利得が小さくなるのでナッシュ均衡です.(B)と(C)で,どちらか一方だけが行動を変えると,そのプレイヤーの利得が高くなるのでナッシュ均衡ではありません

さてさて,次はどうでしょうか?

練習3:アリスと文太は,禅寺かショッピングモールへ行く.アリスは文太が大好きで,行く場所よりも文太に会えることが会えないことより良い.その中で会えたときも会えないときも,禅寺のほうがショピングモールよりも良いと.文太は残念ながらアリスが嫌いで,行く場所よりもアリスに会わないほうが会えるより絶対良いと考えている.その中で,会えたときも会えないときも,禅寺よりショピングモールのほうが良いと考えている.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」と答えよ.
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ,文太はショッピングモールへ行く
(C)アリスはショピングモールへ,文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

この場合はナッシュ均衡は「なし」です.2人が会えている(A)と(D)では,文太が行動を変えると会えなくなって利得が高くなり,2人が会えていない(B)と(C)では,アリスが行動を変えると高くなるので,どれもナッシュ均衡ではありません.(なおこのような場合も確率で戦略を選ぶ混合戦略を用いると,ナッシュ均衡がありますが,その場合は利得を数値で表さなければ確率が計算できません).

3人以上のゲームの例

ナッシュ均衡についての理解が深まってきたでしょうか?それでは3人以上の例を考えて,練習してみましょう.まず簡単な「多数決」を考えてみましょう.

練習4:(奇数人での多数決) 5人で「海」か「山」を選ぶ. 多い人数が選んだ方を選ぶと勝ち,少ない人数が選んだ言葉を選ぶと負け.当然,勝つほうが負けるより良いとします.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」を選べ.
(A) なし
(B) 全員が「海」を選ぶ
(C) 4人が「海」,1人が「山」を選ぶ
(D)3人が「海」,2人が「山」を選ぶ
(E) 2人が「海」,3人が「山」を選ぶ
(F) 1人が「海」,4人が「山」を選ぶ
(G) 全員が「山」を選ぶ

正解は(B)と(G)です. 全員が同じ言葉を選ぶ(B)と(G)では,どの人も他者の選択はそのままで自分の選択を変えると利得が低くなるので,ナッシュ均衡です.それ以外では,少数派になっているプレイヤーは,他者の選択がそのままのときに自分の選択だけを変えると多数派となり,利得が高くなるので,ナッシュ均衡ではありません.

では,次はどうでしょう.ライアーゲームの最初に出てくる「少数決」です.少数派になったほうが勝ちです.

練習5:(奇数人の少数決) 5人で「海」か「山」を選ぶ.少ない人数が選んだ方を選ぶと勝ちで, 多い人数が選んだ方を選ぶと負け.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」を選べ.
(A) なし
(B) 全員が「海」を選ぶ
(C) 4人が「海」,1人が「山」を選ぶ
(D) 3人が「海」,2人が「山」を選ぶ
(E) 2人が「海」,3人が「山」を選ぶ
(F) 1人が「海」,4人が「山」を選ぶ
(G) 全員が「山」を選ぶ

正解は(D)と(E)です.それ以外では,多数派になっている人は,自分だけの選択を変えると少数派となり利得が高くなりますので,ナッシュ均衡ではありません.

これに対し(D)と(E)では,すべてのプレイヤーが自分だけ選択を変えても利得が高くならない(同じか低くなる)のでナッシュ均衡です.なぜかと言うと,少数派となったプレイヤーは自分の選択を変えると多数派になり利得が下がりますし,多数派のプレイヤーは自分だけが選択を変えても,やはり多数派になってしまい(多数派が変わってしまいます)利得は同じになります.

もうお腹いっぱいでしょうかね?それでは,最後の問題です.

練習6:(7人じゃんけん)7人でじゃんけんをします.もちろんすべてのプレイヤーは,勝ち,あいこ,負けの順に良い(利得が高い)とします.
(A) なし
(B) 7人ともにグーを出す
(C) 3人がグー,4人がパーを出す
(D) 1人がグー,2人がパー,4人がチョキを出す
(E) 2人がグー,2人がパー,3人がチョキを出す
(F) 3人がグー,2人がパー,2人がチョキを出す

答えは(E)と(F)です!(B)「7人ともにグーを出す」や (C)「3人がグー,4人がパーを出す」では,グーの人がパーに変えることで負けから勝ちに転じて利得が高くなります.また(D)「1人がグー,2人がパー,4人がチョキ」では,グーの人がチョキに手を変えると,アイコから勝ちに転じて利得が高くなります.したがってナッシュ均衡ではありません.しかし(E)と(F)の場合は,どの人も自分だけが手を変えても,あいこからあいこになるだけで利得は高くなりません.したがって,(E)と(F)はナッシュ均衡です.

ナッシュ均衡(ざっくりした説明)

ここではまずナッシュ均衡について,ざっくり説明します.ナッシュ均衡の定義,求め方,などは,また後ほど.

ナッシュ均衡とは

ざっくりいうとナッシュ均衡とは

どのプレイヤーも,自分だけでは,それ以上利得が大きくできない状態

です.「状態」って言い方は不正確過ぎるか.もう少し正確に言うと,ナッシュ均衡とは

どのプレイヤーも,他のプレイヤーがそのナッシュ均衡の戦略を選んでいるもとでは,その戦略が一番利得が高くなる(他の戦略では利得が同じか低くなる)

ような戦略の組です.あんまり変わんないか.

ナッシュ均衡の例

例を挙げましょう(これは支配戦略の例の客数を変えたものです).

2つのコンビニ,セレブ(セレブイレブン)とファミモ(ファミリーモール)が,まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている.コンビニを1日に利用する客はA駅が600人,B駅が750人である.セレブとファミモがもし違う駅を選べば,利用客を独占できる.しかし同じ駅に出店すると,ファミモが人気で,ファミモはセレブの2倍の客数を獲得できる.すなわち両方がA駅に出店すると,セレブ200人,ファミモ400人.B駅に出店すると,セレブ250人,ファミモ500人である.ここで客数を利得と考える.セレブとファミモはどちらの駅に出店するだろうか?

このゲームを利得行列で書くと下のようになります

ナッシュ均衡の例

例えば「セレブとファミモが共にA駅を選ぶこと」はナッシュ均衡ではありません.なぜならセレブは,ファミモがA駅を選んでいるなら,B駅に変えたほうが利得が高くなるからです.このように,他のプレイヤーの戦略が変わらないもとで,あるプレイヤーが選択を変えると利得が高くなるならば,その戦略の組はナッシュ均衡ではありません.

ナッシュ均衡ではない

これに対し,例えば「セレブがA駅,ファミモがB駅を選ぶこと」はナッシュ均衡です.なぜならセレブもファミモも,相手がそれを選んでいる限り,自分の利得をもっとも高くしているからです.つまりナッシュ均衡では,

どのプレイヤーも(相手がその戦略を選んでいるならば),それ以上利得を高くできない (他の戦略では利得が同じか低くなる)

と言うことになります.

ナッシュ均衡である

ナッシュ均衡は2つ以上あるときもある

しかしこの例では「セレブがA駅,ファミモがB駅を選ぶこと」だけではなく,
「セレブがB駅,ファミモがA駅を選ぶこと」 もナッシュ均衡になることが分かります.つまりナッシュ均衡は1つとは限らず,2つ以上ある場合もあります.このときどちらをゲーム理論の解とすべきかは難しい問題で,これは「均衡選択」と呼ばれる理論と「均衡精緻化」と呼ばれる理論で考えられています(2つの違いを説明するのはちょっと難しい)これはまた別の機会に.

ナッシュ均衡がなぜ解なのか

ナッシュ均衡以外が結果として予測されたとします.このとき,もしすべてのプレイヤーがその予測を知ったならば,少なくとも1人はその予測から違う行動を取ることで利得を高くすることができるはずです.そのプレイヤーは,ナッシュ均衡と違う行動を取るでしょうから,もはやその予測は当たりません.このことから,ゲームの結果の予測をプレイヤーが知っても結果が成り立つためには,その予測はナッシュ均衡でなければならないはずです.(「じゃんけんの必勝法と行動ファイナンス・行動経済学」も参考にしてください)

注意点と補足

  • すべてのプレイヤーが支配戦略を選んでいるときはナッシュ均衡になります.これはナッシュ均衡の特殊ケースと考えられます.したがって囚人のジレンマの結果もナッシュ均衡であると言えます.
  • 上記の点から考えると,じゃんけんにはナッシュ均衡がありませんが,確率を用いる「混合戦略」を考えるとナッシュ均衡が存在します.このような混合戦略まで考えると,すべてのn人有限ゲームにナッシュ均衡が存在します.この素晴らしい定理を誰が証明したかは,よく考えれば分かるはずである.これによって,その人はノーベル経済学賞を受賞しています.私ではありません.
  • ナッシュ均衡が分かったような気がしない?もう少し理解を深めたい?ではナッシュ均衡のおけいこ(1)で練習しましょう.

じゃんけんの必勝法と行動ファイナンス・行動経済学

じゃんけん必勝法とナッシュ均衡の理解

じゃんけんの必勝法はゲーム理論の答である「ナッシュ均衡」を理解するために良い教材になります.
2人でジャンケンをするとき,ゲーム理論の解であるナッシュ均衡は「2人ともグー・チョキ・パーをすべて1/3で出すこと」となり,それ以外はありません.

「グー・チョキ・パーをすべて1/3で出す」以外に,ジャンケンの必勝法があったならば,どうなるのでしょうか?
例えば,1つの必勝法として「グーを多く出し,チョキをあまり出さない」という調査結果が知られており,したがって「パーを出すと勝つ確率があがる」とされています(こちら).また,2回続けて同じ手を出すと,次は異なる手を出すことが多く,したがって「2回続けてアイコになったら,それに負ける手を出せ」というのも必勝法の1つとされています.

( じゃんけんで出やすい手 のページも参考にしてください)

しかし「初心者にはパーを出せ」という必勝法を知っている人には,チョキを出すと勝つことができます.また「2回続けてアイコになったら,それに負ける手を出せ」という人には2回続けてアイコになったら,3回目も同じ手を出すと勝つことができます.このように「グー・チョキ・パーをすべて1/3で出す」以外のあらゆる「ジャンケンの必勝法」は,それを使うことが知られてしまうと,もう必勝法にはなりません.

ゲーム理論の解であるナッシュ均衡は「(自分がナッシュ均衡の戦略を選んでいる状態では),自分はナッシュ均衡以外の戦略を選んでも利得が高くならない」という状態です.「ナッシュ均衡が答だ」と知っているプレイヤー達は,相手がそれに従っていると知っていても,自分もその答に従うことが最適であり,ナッシュ均衡以外の戦略に変えたいと思う動機を持たないのです(これはナッシュ均衡の自己拘束性と呼ばれる).

逆に<ナッシュ均衡以外の予測が答だ>とされると,誰かはそこから選択や行動を変えることで利得が高くなります.したがって,その予測や予言をゲームをするプレイヤーが知ったときには,多くの人が知ったときには当たらなくなります.

このような理由から,ナッシュ均衡である 「2人ともグー・チョキ・パーをすべて1/3で出すこと」が唯一のゲームの解とされています.

行動ファイナンス・行動経済学とじゃんけんに対する考察

行動経済学や行動ファイナンスと呼ばれる分野は,人間が必ずしもゲーム理論や経済学の理論通りに行動しないということを研究する分野です.「人間は経済学で考えるほど合理的には行動しないんだ!」という事実を,たくさん教えてくれるこの分野は,多くの人にとって魅力的に映ります.

ジャンケンの必勝法について考察することは,行動経済学や行動ファイナンスに対して私達がどのように接するべきかを考える手がかりになります.行動ファイナンスや行動経済学では,理論から乖離した人間の行動や現象が観察されることがあります.行動ファイナンスや行動経済学と言っても,その立場には以下のようにいくつかのものがあるように思えます.


(1)人間の行動が,自己の獲得する金銭を最大にするのではなく,別に目的があることを明らかにする.この立場では個人は効用を最大にする合理的な人間と解釈している.例えばファイナンスでは「ファンドマネージャーは,運用益を最大にしようとするのではなく,他者の運用益の平均を下回らないように行動する」「最後通牒ゲームでは自己の獲得利益を最大にするだけではなく,他者と公平であることも望み,それとのバランスで効用が決まる」など.


(2)人間の思考や認知には限界があったり,感情が理性的な判断を邪魔することで本人が目的としていることと異なる選択をすることがある.この立場では,個人は効用を最大にできない非合理的な人間と解釈される.

上記の立場から,じゃんけんの必勝法を考察してみると,以下のようになるのではないでしょうか.

(1)の立場で発見された必勝法は,それが皆に知られても必勝法として残る可能性があると考えられます.ジャンケンに当てはめると,例えば「私はチョキを愛してやまない」という人がいたとすれば(そんな人はいないけど…),彼に対して「グーで勝つ」という必勝法は,たとえ彼がそれを知っても残る可能性があります.つまりこの場合は,彼は「勝つこと」より,「チョキを出して負けたこと」に喜んでいれば,それで勝った方も負けた方も自分の目的に従って合理的な選択をしたことになります.

余談ですが,私は競馬が好きなんですけど,毎年の回収率はマイナスです.非合理的だという人がいるんですが,私が競馬をするのはお金をプラスにするという目的よりは,自分の予想が当たるかどうかを楽しんだり,自分お好きな馬を応援したりするようなレジャーとしての目的が強く,ディズニーランドに行くのにお金を払ったりするのと同じように,競馬にお金を支払ってレジャーを楽しんでいることになります.もし競馬の目的を「お金を儲けることである」と規定されたら,私は非合理的な人間となりますが,「自らの予想が当たるかどうかを試す行為や,自分が好きな馬に賭けてそれを応援するという行為」が目的であるなら,これは合理的な行為だということになります.

しかし,じゃんけんにおいて「私はチョキを愛してやまない」という行為は考えにくいですよね?

これに対して(2)の立場で発見された必勝法-「初心者にはパーを出せ」「2回続けてアイコになったら,それに負ける手を出せ」と言った類のもの-は,それが皆に知られてしまったときに,なくなってしまうように思えます.ただし,人間の思考や認知に限界があるので「分かっていてもできない,だからこのような必勝法は使える」というのは1つの考え方かもしれません.これは「人間は,自分で乱数を作ることが難しい」などの認知科学の研究成果と合致する考え方である.

行動ファイナンスや行動経済学の研究に興味を持つ人には,このような人間の非合理的な行動パターンを利用して,超過利益を得ようとすることが目的である人も多くいるようです.果たして彼らは上記のことについて,どのように,どのくらい考えているのでしょうか.非合理的な人間行動の判断ミスやアノマリは「何らかの理由でなくならない」と考えるのでしょうか,それとも「それはやがてはなくなるけど,全員にそれが知られてなくなるまでの時間に,それを利用して利益をあげよう」と考えるのでしょうか.

私は,行動ファイナンスや行動経済学で明らかになった「事実そのもの」よりは,「その事実が将来になくなるものなのかなくならないものなのか.その判断基準が何なのか.なくならないとしたら,その理由は何であるか」について知りたいです.今後,これについてはたくさん勉強しなければならないなと思っています.

わたなべじゃんけんとは?

じゃんけんで出やすい手

囚人のジレンマ

囚人のジレンマとは

囚人のジレンマは,ゲーム理論の中でもっとも有名なモデルと言えるでしょう.
2人のプレイヤーが協力するか,協力しないかを選ぶ問題で,このとき以下の3つの条件が成立するとき,それは囚人のジレンマと呼ばれます.

(1)各プレイヤーは,相手が協力するなら自分は協力しないほうが良い.
(2)各プレイヤーは,相手が協力しなくても,自分は協力しないほうが良い.
(3)しかし各プレイヤーは,2人が協力しないよりは,2人が協力したほうが良い.

(1)と(2)から,相手が何を選んでも自分は「協力する」より「協力しない」ほうが良いので,2人は協力しないことを選択します.しかしその結果が2人が協力することよりも悪くなっているため問題となるわけです.

ここで 「協力する」ことはゲーム理論では支配戦略と呼ばれます.支配戦略は,相手が何を選んでも,自分にとって他の選択より良い選択です.このことから支配戦略を選ぶことは自明のように思えるのですが, 囚人のジレンマを考えると支配戦略を選ぶことが必ずしも自明では思えなくなります.

囚人のジレンマの由来

この問題が囚人のジレンマと呼ばれるのは,タッカー(A. Tucker.カルーッシュ・クーン・タッカー条件(Karush-Kuhn-Tucker condition)のタッカーです)という数学者が上の状況を以下のようなストーリーで表現したことが由来であると言われています(以下はタッカーのオリジナルのストーリーとは違います).

(囚人ジレンマ ストーリー)重罪を犯しているが,証拠が不十分なため軽微な罪で逮捕されている2人の囚人がいる.彼は別々な部屋で取引を持ちかけられる「お前だけが自白すれば無罪にしてやる」.もし2人が黙秘を続けると,軽微な罪で懲役1年である.しかし1人が自白し,1人が黙秘をすると,自白した方は釈放,黙秘した方は(捜査に協力しないことで罪が重くなり)懲役10年.しかし両方が自白すると懲役5年になる.さて,あなたが囚人ならば自白したほうが良いか,黙秘したほうが良いか?

この状況を表にすると,以下のようになります.

囚人のジレンマ

先に述べた「協力すること」を「黙秘」に,「協力しないこと」を「自白」に置き換えると,囚人のジレンマの3条件に当てはまることが分かります.すなわち,

(1)各囚人は,相手が黙秘するなら,自分は自白するほうが良い.
(2)各囚人は,相手が自白するとしても,自分は自白するほうが良い.
(3)しかし各囚人は,2人が自白するよりは,2人が黙秘したほうが良い.

相手が黙秘しても自白しても,自分は黙秘するより自白するほうが良いので,2人は自白を選びます.しかし,その結果は2人が黙秘するよりも悪くなります.

囚人のジレンマの例

この問題が興味を持たれるのは,社会や経済や政治の問題にこのジレンマが多く現れるからです.例えば

  • 2国間の軍備拡張の問題.相手国が軍備拡張しない場合,自国だけが軍備拡張をすれば相手に外交上優位な立場に立てる.相手国が軍備拡張しない場合は,自分も拡張して追いつかなければ,相手に優位に立たれてしまう.しかし,両国とも拡張すると,拡張前と力のバランスは変わらず,ただ軍事費だけが増えてしまう(核兵器の問題にも同様な文脈が使われます).
  • 安売りの問題.競争関係にある2店舗が,顧客を取り合うために,商品の価格を現状維持とするか,安売りをするかの問題.相手が現状維持の場合,自分だけが安売りをすれば顧客を奪い売上が増えるので,安売りをしたほうが良い.相手が安売りをしている場合,自分だけが現状維持をすると顧客を奪われ売上が減少するので,こちらも安売りをしたほうが良い.しかし両者が安売りをすると,顧客を奪うことはできず,価格の低下で売上だけが減ってしまう.

と言った現象です.なお安売りの問題は,安売りをしている企業にとっては問題ですが,消費者にとってはそれ以上に恩恵があります.市場の価格競争は,囚人のジレンマという構造を利用して消費者の厚生を高める仕組みだと言うこともできます.

囚人のジレンマの繰り返し

囚人のジレンマは,本来なら協力することが望ましい2人が協力しない方が良いという結果になってしまうジレンマです.これは,協力することをコミットするような契約(協力しなければ罰金を払うなど)を結ぶことで解決できる可能性がありますが,国家間の関係のように,このような契約を結ぶことが難しい場合もあります.このような場合,囚人のジレンマの状況は1回きりではなく,長期間に継続する問題でもあります.このような長期間に続く囚人のジレンマは,囚人のジレンマを何度も繰り返すようなゲームだと考え,繰り返しゲームという枠組みで分析されます.

注意点

囚人のジレンマを語るには,以下のことに注意する必要があります.

  • 2人ではなく3人以上の多人数版の囚人のジレンマは共有地の悲劇と呼ばれます.3人以上でも,「囚人のジレンマ」と呼ばれることもありますが...
  • 「2人が協力しない」というゲームの解を支配戦略ではなく,ナッシュ均衡であるとしている解説もあります.(全員が)支配戦略を選ぶ場合はナッシュ均衡の特殊ケースなので,そうしても間違いではありません.しかしそれよりも強い支配戦略として理解するほうが適切です.
  • 囚人のジレンマと言われている状況でも,3つの条件のうち,(2)について抜けている場合があります.例えば
    X先生と2人で教授会で口論になり,教授会の時間がどんどん長引いている.(1′)X先生が折れるなら,自分は折れるより折れないほうがいい.(2′)自分が折れるなら,X先生は折れるより折れないほうがいい.(3′)でも2人が折れないなら,教授会は長引くばかりで,それなら2人とも折れたほうがいい(まったくの,まったくのフィクションです).
    一見すると条件が3つ揃ってるように見えますが,(1′)も(2′)も「相手が協力するなら,自分は協力しないほうが良い」という囚人のジレンマの条件(1)を2人のプレイヤーに分解して言い換えただけで,条件(2)(相手が折れないなら,自分は折れたほうが良いのか,折れないほうが良いのか)が特定されていません.もし「相手が折れないなら,自分は折れたほうがいい」ならば,これはチキンゲームです.

囚人のジレンマのブックガイド

  • 囚人のジレンマ--フォンノイマンとゲームの理論 (1995),ウィリアム・パウンドストーン(著),松浦俊輔(訳),青土社,\2600,ISBN:4791753607.
    • まさに「囚人のジレンマ」をタイトルにした本だが,それのみではなくゲーム理論の歴史と逸話に,ゲーム理論の初歩的な考え方を絡めた読み物である,ゲーム理論とは何かを知る入門書としても面白い.囚人のジレンマの誕生や囚人のジレンマに関する多くの研究について知ることができる.キューバ危機ではノイマン自身が原子力安全委員会の委員長として,ソ連とアメリカの囚人のジレンマにどう対応したかなどが興味深く記されている.原著はW. Poundstone, Prisonaer’s Dillemma (1992),Doubleday.
  • つきあい方の科学―バクテリアから国際関係まで (1984),R. アクセルロッド (著),Robert Axelrod (原著),松田 裕之 (翻訳),Minerva21世紀ライブラリー(ミネルヴァ書房),\2600,ISBN:4623029239.
    • 「囚人のジレンマ」の研究の中で,一般の人に有名で影響が強く,分かりやすいのはロバート・アクセエルロッドのコンピュータプログラムどうしのトーナメントによる実験であろう.この本は,その詳細をな結果や経緯をもとに,囚人のジレンマ研究のビジネスへの応用が解かれている.
  • 信頼の構造--こころと社会の進化ゲーム (1998),山岸敏男(著),東京大学出版会,\3200,ISBN:413011086
    • 社会心理学の立場から実験やゲーム理論の成果などをふまえて囚人のジレンマや社会的ジレンマがどのように起こり,どのように解決されるかの要因を探り,分かりやすく解説した本.馴れ合いや安易な集団主義に警告を発し,真の信頼関係を築くために何が必要なのかを語る.出版当時は,これからの日本がどうあるべきかを示唆すると共に実験経済学などの方面を踏まえて,これからのゲーム理論がどのように進むべきかも考えさせられた.
  • 社会的ジレンマ--環境破壊からいじめまで(2000),山岸敏男(著),PHP新書,\660,ISBN:4569611745
    • 前述の本が社会的ジレンマ研究のサーベイや実験経過などを理論的に解説する研究者向けの本であるのに対して,同著者のこの本は社会的ジレンマとその解決を一般向けに解説した本であった.
  • 対立と協調の科学-エージェント・ベース・モデルによる複雑系の解明 (2003)、ロバート・アクセルロッド (著),寺野 隆雄 (翻訳),ダイヤモンド社,\3800,ISBN:447819047X ロバート・アクセルロッド最新刊 

支配戦略

支配戦略とは

戦略形ゲームにおいては,各プレイヤーがどの戦略(選択,行動,代替案)を選ぶかを決めることが分析の主たる目的となります.

このとき1人のプレイヤーに対して

自分以外のプレイヤーが何を選んでも,自分の他の戦略よりも良い戦略(利得を高くする戦略)

があれば,その戦略を(そのプレイヤーの)支配戦略と呼びます.
プレイヤーに支配戦略があれば,そのプレイヤーはその支配戦略を選ぶと考えます.

支配戦略の例

例を挙げましょう.

支配戦略の例(コンビニ戦争2):2つのコンビニ,セレブ(セレブイレブン)とファミモ(ファミリーモール)が,まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている.コンビニを1日に利用する客はA駅が1200人,B駅が300人である.セレブとファミモがもし違う駅を選べば,利用客を独占できる.しかし同じ駅に出店すると,ファミモが人気で,ファミモはセレブの2倍の客数を獲得できる.すなわち両方がA駅に出店すると,セレブ400人,ファミモ800人.B駅に出店すると,セレブ100人,ファミモ200人である.ここで客数を利得と考える.セレブとファミモはどちらの駅に出店するだろうか?

ゲーム理論を持ち出すまでもなく,ちょっと考えるとセレブもファミモもA駅を選ぶことが分かるでしょう.B駅を独占しても高々300人ですからね.でも最初はこの例から始めましょう.

このゲームを利得行列で書くと下のようになります.

コンビニ戦争2

このときセレブの視点に立ってみましょう.セレブは

  • ファミモがA駅を選ぶならB駅(300)よりA駅(400)を選ぶほうが良い.
  • セレブは,ファミモがB駅を選んでも B駅(100)よりA駅(1200)を選ぶほうが良い.

と言うことが分かります.セレブは,ファミモが何を選んでも,B駅よりはA駅の方が良い戦略です.したがってA駅はセレブの支配戦略です(以下の図).

セレブの支配戦略

同様に ファミモの視点に立って考えてみます.

ファミモの支配戦略

セレブは,ファミモが何を選んでも,B駅よりはA駅の方が良い戦略です.したがってA駅はセレブの支配戦略です.

もしすべてのプレイヤーに支配戦略があれば,すべてのプレイヤーが支配戦略を選ぶことがゲームの答となり,そのゲームは解けたことになると言えるでしょう.今回の例では,セレブもファミモも支配戦略はA駅でしたから,両方ともA駅を選ぶと予測でき,ゲームは解けたことになります.

支配戦略はゲーム理論における「強い解」

支配戦略は,相手の選択に関わらず,自分にとって他の選択より良いような選択がある場合です.このときプレイヤーは,相手や自分にとっての知識が完全でなくても行動を確定することができます.例えば,

(禅が好きなアリス)アリスと文太は,それぞれ禅寺に行くか,ショッピングセンターに行くか悩んでいる.アリスはとにかく禅寺に行きたいので,文太が禅寺に行っても行かなくても,ショッピングセンターよりは禅寺がいい.

この場合,アリスにとって禅寺に行くことが支配戦略になり,アリスは禅寺に行くことが確定します(だから「悩んでいる」って問題設定はおかしいんだけど).しかも

  • 文太の利得は全く分かっていない.つまりプレイヤーに支配戦略があれば,相手の行動どころか,利得さえ分からなくても,そのプレイヤーの行動は確定する.
  • アリスも結果に対する好みがすべて確定しているわけではない.例えば「文太と一緒に禅寺に行くこと」と「アリスだけが禅寺に行き,文太はショッピングセンターに行くこと」のどちらが良いかは問題には定められていない(文太が好きなのか,嫌いなのか?).つまりプレイヤーは,相手の選択それぞれに対する自分の好みだけが分かっていれば行動は確定する.

ということになります.つまり支配戦略があれば,細かい情報はなくてもプレイヤーはそれを選ぶことになります.このことは,支配戦略によるプレイヤーの行動の予測は,かなり確かなものになっているということで,支配戦略がないゲーム(その解はナッシュ均衡)よりも,より確からしい予測を与えているということになります.

  • 「禅が好きなアリス」は文太の好みが分からないと,文太が何を選ぶかは分からない.この例の続きは(未完).
  • 支配戦略がない場合は,ゲームの解としてはナッシュ均衡を考えることになる.

このように支配戦略があればゲームの解は自明なように思えますが,必ずしもそうではないように見えるゲームがあります.それが囚人のジレンマであり,共有地の悲劇です.

戦略形ゲームと利得行列

戦略形ゲームは,展開形ゲームと並ぶ非協力ゲームの表現形式です(参照:戦略形ゲームと展開形ゲーム).戦略形ゲームは,プレイヤー,戦略,利得の3つの要素から構成されます.すべてのプレイヤーは同時に戦略を選び,その結果,各プレイヤーの利得が決まります.戦略形ゲームの例として,次のような問題を考えてみましょう.

戦略形ゲームの例(コンビニ戦争1):2つのコンビニ,セレブ(セレブイレブン)とファミモ(ファミリーモール)が,まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている.コンビニを1日に利用する客はA駅が600人,B駅が300人である.セレブとファミモがもし違う駅を選べば,利用客を独占できる.しかし同じ駅に出店すると,ファミモが人気で,ファミモはセレブの2倍の客数を獲得できる.すなわち両方がA駅に出店すると,セレブ200人,ファミモ400人.B駅に出店すると,セレブ100人,ファミモ200人である.ここで客数を利得と考える.セレブとファミモはどちらの駅に出店するだろうか?

本題に入る前に言っておきたいのですが,別にこのページはコンビニの戦略の話をしたいのではなくて,ゲーム理論とは何かを話すための「例」ですからね.「両方に出店するというのはないのでしょうか」とか聞く人がいるけど(本当にたくさんいる),そうしたければ,そういう例を勝手に考えてください.むかし,あるビジネス系の雑誌に,こういう例を出したら,雑誌の編集部の人がコンビニの会社の人に聞きに行って,そしたら「うちには『客を取り合う』という発想はない.2つのコンビニに同じ駅に出店すると集積効果があって,利用客は増える」とか言われてしまったのですが,そうならば,そういう例を作ればいいですよ.でも増えたりしたら,例として分かりにくいじゃないですか.ここはリアリティを求めてるんじゃなくて,わかりやすい例にしてるんです.

で,本題です.上記の例の場合,戦略形ゲームの3要素(プレイヤー,戦略,利得)は

  • プレイヤー:セレブとファミモ
  • セレブの戦略:A駅に出店する,B駅に出店する
  • ファミモの戦略:A駅に出店する,B駅に出店する
  • 利得:上記に書かれている客数

のようになります.このようにプレイヤーが2人のゲームを2人ゲームと呼び,その中でも両プレイヤーの戦略の数が2つの場合は2✕2ゲーム(ツーバイツーゲーム,と呼ぶ)と呼ばれます.2✕2ゲームは,戦略形ゲームの中で最も簡単なゲームであると言えます.

「利得は上記に書かれている」と言われても見にくいので,このような2人戦略形ゲームを表すには,以下のような利得行列という表を使います.

利得行列

この表では,セレブが行(水平方向)を選択し,ファミモが列(垂直方向)を選択し,交わったセルの左側の数値がセレブの利得,右側の数値がファミモの利得を表します.例えば,セレブがA駅,ファミモがB駅を選ぶと…

セレブがA駅,ファミモがB駅を選択

このようになり,セレブの利得が600,ファミモの利得が300になることが分かります.

利得行列にはいろいろな書き方があり,下の図のようにセルを左下と右上に区切り,左下に第1プレイヤー(行を選ぶプレイヤー,今回はセレブ)の利得,右上に第2プレイヤーの利得を書く場合もあります.

利得行列の別の書き方