クールノー競争とベルトラン競争入門(3):クールノー競争の価格・生産量と社会的総余剰

独占市場における価格と生産量の決定を理解したとして,ここでは2社のクールノー競争の価格と生産量の決定,および社会的総余剰の計算について説明します.

クールノー競争の価格と生産量の決定:モデル

ここでは同質財を販売している2社の生産量競争を考えます.一般にクールノー競争と呼ばれるのは,このモデルです(不完全競争市場の分類).

  • 企業AとBが同じ製品(同質財)を販売するとします.AとBの生産量をそれぞれ\(x_A,x_B\)とし,AとBは\(x_A,x_B\)を決定するとしましょう.
  • 市場全体の生産量を\(x=x_A+x_B\)に対して,その価格\(p\)は$$p=a-bx$$で与えられるとします.
  • ここで製品を1単位の費用(限界費用)はAもBも\(c\)で同じであり,生産量にかかわらず一定とします.簡単にするため固定費は考えません.
  • AとBは利益を最大にすると考えます.AとBは,生産量\(x_A,x_B\)をいくらにするでしょうか.

問題の解法

問題は以下のようにして解くことができます.

  • 企業Aの利益を\(\pi_A\)とおく.ここで(利益)=(収入)-(費用)であり,収入は(価格)\(\times\)(生産量),費用は(限界費用)\(\times\)(生産量)となります.したがって$$\pi_A=px_A-cx_A$$となります.
  • この\(\pi_A\)を最大にする\(x_A\)を考えます.そこで\(p=a-bx\)を代入し,さらに\(x=x_A+x_B\)に注意すると\[ \begin{align} \pi_A &= px_A-cx_A \\ &=(a-bx)x_A-cx_A \\&=
    \{a-b(x_A+x_B)\}x_A-cx_A\\&=-bx_A^2-bx_Ax_B+(a-c)x_A \tag{1} \end{align}\]となります.
  • この式(1)を最大にする\(x_A\)を求めるには,ざっくり言うと\(x_A\)で微分
    (正確には偏微分)して0になるところを求めれば良い.(1)を\(x_A\)で微分すると,\(-2bx_A-bx_B+(a-c)\)となります.したがって\[-2bx_A-bx_B+(a-c)=0\]を解けば良く,これより\[x_A=-\frac{1}{2}x_B+\frac{a-c}{2b} \tag{2}\]となります.
  • 式(2)は,企業Aの最適反応関数と呼ばれます.式(2)は\(x_B\)が与えられたときに企業Aの利益を最大にする企業Aの生産量を表しています.したがって,企業Bの生産量が決まれば,企業Aとの最適な生産量(答)が決まるのですが,企業Bの生産量がいくらになるか分かりません.そこで企業Bが利益を最大にする生産量を同様に求めてみます.
  • 企業Bの利益を\(\pi_B\)とおきます.$$\pi_B=px_B-cx_B$$であり,企業Aの場合と同様に\(p=a-bx\)を代入して計算し,$$\pi_B=-bx_B^2-bx_Ax_B+(a-c)x_B$$を得ます.さらに\(x_B\)で微分して0になるところを求めると,\[x_B=-\frac{1}{2}x_A+\frac{a-c}{2b} \tag{3}\]となります.
  • この式(3)は,企業Bの最適反応関数と呼ばれます.企業Aと同様に\(x_A\)が与えられたときに,企業Bの利益を最大にする企業Bの生産量を表しています.
  • ここで,企業Aは企業Bの生産量が分からなければ,利益を最大にする生産量が分からず,企業Bは企業Aの生産量が分からなければ,利益を最大にする生産量が分かりません.ここでゲーム理論のナッシュ均衡の概念により解を求めるわけです.ナッシュ均衡は,お互いが最適反応戦略を選び合うような戦略の組み合わせで,ここでは式(2)と式(3)を同時に満たす\(x_A\),\(x_B\)となります.
  • 式(2)と式(3)を同時に満たす\(x_A\),\(x_B\)は,これらを連立方程式で解くことによって求められます.式(3)の\(x_B\)を式(2)に代入して計算すると\(x_A=-\frac{1}{4}x_A+\frac{a-c}{4b}\)となり,これから\(x_A=\frac{a-c}{3b}\)を得ます.またこれを式(2)に代入して,\(x_B=\frac{a-c}{3b}\)を得ます.
    このときの価格は\[p=a-bx=a-b(x_A+x_B)=\frac{a+2c}{3} \]となります.
  • このとき企業Aの利益は\[ \begin{align} \pi_A &= px_A-cx_A =(p-c)x_A\\ &=\left(\frac{a+2c}{3}-c\right)\left(\frac{a-c}{3b}\right)=\frac{(a-c)^2}{9b} \end{align}\] となります.同様に企業Bの利益も同じになります.

まとめますと,クールノー競争における企業Aと企業Bの生産量は\(x_A=x_B=\frac{a-c}{3b}\)となります.これをクールノー均衡と呼びます.クールノー均衡における価格は\(p=\frac{a+2c}{3}\),各企業の利益は\(\pi_A=\pi_B=\frac{(a-c)^2}{9b}\)となります.

消費者余剰,社会的総余剰

独占市場における,消費者余剰,生産者余剰,社会的総余剰について示します.

市場全体の取引量が\(x=x_A+x_B=\frac{2(a-c)}{3b}\)であることに注意すると,上記で求めたクールノー競争の価格と生産量と企業の限界費用は,以下の図で示すことができます.

クールノー競争における生産量・価格・社会的総余剰

消費者余剰は,図の青色で示された部分の三角形です.

三角形の底辺の長さは\(\frac{2(a-c)}{3b}\),高さは\[ a-\frac{a+2c}{3}=\frac{2(a-c)}{3} \]ですから,三角形の面積は\[ \frac{1}{2} \times\frac{2(a-c)}{3b} \times \frac{2(a-c)}{3}=\frac{2(a-c)^2}{9b} \]となります.

企業の利益は,図の緑色の部分の長方形の面積です.

長方形の高さ(価格-限界費用)は,\(\frac{a+2c}{3}-c=\frac{a-c}{3}\),ヨコの長さは\(\frac{2(a-c)}{3b}\)ですので,長方形の面積は\[\frac{a-c}{3}\times\frac{2(a-c)}{3b}=\frac{2(a-c)^2}{9b}\]となります.先に求めた企業の利益を合計した値(\(\pi_A+\pi_B\))と一致することがわかりますね.これを生産者余剰とも呼びます.

社会的総余剰は,消費者余剰と生産者余剰の総和です.したがって社会的総余剰は
\[\frac{2(a-c)^2}{9b}+\frac{2(a-c)^2}{9b}=\frac{4(a-c)^2}{9b}\]です.

クールノー競争とベルトラン競争入門(2):独占市場の価格・生産量と社会的総余剰

クールノー競争は,2社以上の企業が利益を最大化するように生産量を決める生産量競争です.その考え方の基本となるのは,企業が1社のときの独占市場の生産量決定です.1社のときが分からないで,2社以上の場合が分かることがあろうか.いやない.(反語).ここでは独占市場において,生産量と価格がどのように決定されるかを示します.

独占市場の価格と生産量の決定:モデル

ここでは以下の例を考えます.

  • 企業Aがある製品を独占的に販売しているとし,その生産量\(x\)を決定するとしましょう.
  • 生産量\(x\)に対して,その価格\(p\)は$$p=a-bx$$で与えられるとします.
    • ここでは生産量=需要量(取引量)となるように価格が決定されるとします.すなわち在庫は考えず,すべての生産量が売り切るように価格がつくと考えます.
    • したがって,たくさん生産すると取引量は多いのですが,価格が下がり,儲かりません.価格を高くしようとすると少なく生産しなければならず,その生産量が少なすぎても儲かりません.すなわち,価格と生産量の間にトレードオフがあり,そのもとで,企業Aは生産量\(x\)を決定する問題を考えます.
    • なお「価格が\(p\)のとき,需要を\(x\)とすると,\(x=\alpha – \beta p\)となる」のように,需要関数が与えられる場合もあります.その場合は, 生産量=需要量(販売量)となることから,\(x\)を生産量と考えて,\(p=(\alpha/\beta)-(1/\beta)x\)のように\(p\)の式に変換すれば良いわけです.\(a=\alpha/\beta\),\(1/\beta\)とおくと,上記の設定になります.
  • ここで製品を1単位売る費用(限界費用)は\(c\)とし一定とします.簡単にするため固定費は考えません.
  • 企業Aとは利益を最大にするように,この製品の生産量\(x\)を決定するとします.\(x\)はいくらになるでしょうか.

問題の解法

問題は以下のようにして解くことができます.

  • 企業Aの利益を\(\pi\)とおく.ここで(利益)=(収入)-(費用)であり,収入は(価格)\(\times\)(生産量),費用は(限界費用)\(\times\)(生産量)となります.したがって$$\pi=px-cx$$となります.
  • この\(\pi\)を最大にする\(x\)を求めれば良いわけです.そこで \(p=a-bx\) を代入して\(x\)だけの式にすると\[ \begin{align} \pi &= px-cx \\ &=(a-bx)x-cx \\&=-bx^2+(a-c)x \end{align}\]となります.
  • この式を最大にする\(x\)を求めるには,ざっくり言うと\(x\)で微分して0になるところを求めれば良い.\(-bx^2+(a-c)x\)を \(x\)で微分すると,\(-2bx+(a-c)\)となります.したがって\[ -2bx+(a-c)=0 \]を解けば良く,これより\(x=\frac{a-c}{2b}\)が求める生産量(最適生産量)となります.
  • このときの価格は,\(p=a-bx^*=\frac{a+c}{2}\)となります.
  • このとき企業の利益は\[ \begin{align} \pi &= px-cx =(p-c)x \\ &=(
    \frac{a+c}{2}-c)(\frac{a-c}{2b})=\frac{(a-c)^2}{4b} \end{align}\] となります.

消費者余剰,社会的総余剰

独占市場における,消費者余剰,生産者余剰,社会的総余剰について示します.

上記で求めた独占市場の価格と生産量と企業の限界費用は,以下の図で示すことができます.

独占市場における消費者余剰・生産者余剰

消費者余剰は,図の青色で示された部分の三角形です.

(なぜこの部分が消費者余剰になるかは,ミクロ経済学のテキストなどを参照してください.なお拙著「ゼミナールゲーム理論入門」の5章にも,独占やクールノー競争での消費者余剰や社会的総余剰の数値例による初歩的な解説があります).

三角形の底辺の長さは\(\frac{a-c}{2b}\),高さは\[ a-\frac{a+c}{2}=\frac{a-c}{2} \]ですから,三角形の面積は\[ \frac{1}{2} \times\frac{a-c}{2b} \times \frac{a-c}{2}=\frac{(a-c)^2}{8b} \]となります.

企業の利益は,図の緑色の部分の長方形の面積です.

なぜかと言うと,製品1単位の利益は長方形の高さ(価格-限界費用)になり,これに長方形のヨコの長さ(取引量)をかけたものが利益となるからです.なお

長方形の高さ(価格-限界費用)は,\(\frac{a+c}{2}-c=\frac{a-c}{2}\),ヨコの長さは\(\frac{a-c}{2b}\)ですので,長方形の面積は\[\frac{a-c}{2}\times\frac{a-c}{2}=\frac{(a-c)^2}{4b}\]となります.先に求めた値と一致しますね.これを企業の生産者余剰とも呼びます.

社会的総余剰は,消費者余剰と生産者余剰の総和です.したがって社会的総余剰は
\[\frac{(a-c)^2}{8b}+\frac{(a-c)^2}{4b}=\frac{3(a-c)^2}{8b}\]です.

ナッシュ均衡のおけいこ(1)

利得行列や数式を用いずナッシュ均衡を理解する

ゲーム理論の解はナッシュ均衡(詳しくはこちらで説明しました)「ゲーム理論が分かった!」と思えるためには,ナッシュ均衡が理解できていなければなりません.でもよく見るゲーム理論入門では,ナッシュ均衡は利得行列を使って説明されるので,プレイヤーの利得が数式や数値で表されていたり,少なくとも表で与えられてなければ,ナッシュ均衡が求められないような気がします.しかし,それは正しいナッシュ均衡の理解ではありませんね.ここでは,数式や表を用いないでいくつかの問題を考え,ナッシュ均衡を理解していきましょう.

まずナッシュ均衡の定義をおさらいしましょう.ナッシュ均衡とは,

どのプレイヤーも,他のプレイヤーがそのナッシュ均衡の戦略を選んでいるならば,自分はそのナッシュ均衡の戦略を選ぶことが利得がもっとも高くなる.

です.つまり,

どのプレイヤーも,他のプレイヤーがそのナッシュ均衡の戦略を選んでいるならば,自分はそのナッシュ均衡の戦略以外を選ぶと,利得が同じか低くなる(高くなることはない)

ということです.この「同じか低くなる」と言うのは1つのポイントですね.相手の戦略に対して利得が最大になる戦略が1つならば「低くなる」でいいのですが,最大になる戦略が<同点>で2つ以上あるときは, 他の戦略でも利得は低くなるとは限らず,同点になることもあります.

ここで「利得が高くなる」と言うのは,プレイヤーにとって「良い」とか「好ましい」ということです.

2人ゲームの例

2人ゲームで練習してみましょう.なお以下では確率で戦略を選ぶ「混合戦略」は考えません.

練習1:アリスと文太は,禅寺かショッピングモールへ行く.アリスは文太の行動に関わらず禅寺に行くほうが,ショッピングモールに行くよりも絶対に良いと考えている.その中でどちらに行ったときも,どちらかと言えば文太に会えないよりは会える方が良いと考えている.文太はどちらに行くかよりも,アリスに会えることが会えないことより絶対に良いと考えている.その中で会えたときも会えないときも,どちらかと言えばショッピングモールのほうが禅寺よりも良い.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」と答えよ.
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ,文太はショッピングモールへ行く
(C)アリスはショピングモールへ,文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

正解は(A).(A)では,どちらのプレイヤーも,自分だけが行動を変えると利得が小さくなるのでナッシュ均衡です.(B)では文太は禅寺へ行ったほうが利得が高くなりますし,(C)と(D)では,アリスは禅寺へ行ったほうが利得が高くなります.したがってナッシュ均衡ではありません.

なお(C)で「文太はショッピングモールに行ったほうが利得が高くなるのでナッシュ均衡ではない」としても良いです.「ナッシュ均衡ではない」ことを示すには,選択を変えると利得が高くなるプレイヤーが1人でもいることを示せば良いので,アリスと文太の両方について言わなくても,どちらか1人で良いわけです.なお上記の場合,アリスにとって禅寺に行くことは支配戦略です.支配戦略がある場合は,ナッシュ均衡では必ずその戦略が選ばれるはずです.

次はどうでしょうか?

練習2:アリスと文太は,禅寺かショッピングモールへ行く.アリスも文太もどちらに行くかよりも,相手に会えるほうが会えない方が大切で,それが絶対良いと考えている.その中でアリスは,会えたときも会えないときも,禅寺のほうがショピングモールよりも良く,文太はショッピングモールのほうが禅寺よりも良い.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」と答えよ.
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ,文太はショッピングモールへ行く
(C)アリスはショピングモールへ,文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

正解は(A)か(D).2人が会えている(A)と(D)では,どちらか一方だけが行動を変えると,そのプレイヤーの利得が小さくなるのでナッシュ均衡です.(B)と(C)で,どちらか一方だけが行動を変えると,そのプレイヤーの利得が高くなるのでナッシュ均衡ではありません

さてさて,次はどうでしょうか?

練習3:アリスと文太は,禅寺かショッピングモールへ行く.アリスは文太が大好きで,行く場所よりも文太に会えることが会えないことより良い.その中で会えたときも会えないときも,禅寺のほうがショピングモールよりも良いと.文太は残念ながらアリスが嫌いで,行く場所よりもアリスに会わないほうが会えるより絶対良いと考えている.その中で,会えたときも会えないときも,禅寺よりショピングモールのほうが良いと考えている.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」と答えよ.
(A)2人とも禅寺へ行く
(B)アリスは禅寺へ,文太はショッピングモールへ行く
(C)アリスはショピングモールへ,文太は禅寺へ行く
(D)2人ともショッピングモールへ行く

この場合はナッシュ均衡は「なし」です.2人が会えている(A)と(D)では,文太が行動を変えると会えなくなって利得が高くなり,2人が会えていない(B)と(C)では,アリスが行動を変えると高くなるので,どれもナッシュ均衡ではありません.(なおこのような場合も確率で戦略を選ぶ混合戦略を用いると,ナッシュ均衡がありますが,その場合は利得を数値で表さなければ確率が計算できません).

3人以上のゲームの例

ナッシュ均衡についての理解が深まってきたでしょうか?それでは3人以上の例を考えて,練習してみましょう.まず簡単な「多数決」を考えてみましょう.

練習4:(奇数人での多数決) 5人で「海」か「山」を選ぶ. 多い人数が選んだ方を選ぶと勝ち,少ない人数が選んだ言葉を選ぶと負け.当然,勝つほうが負けるより良いとします.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」を選べ.
(A) なし
(B) 全員が「海」を選ぶ
(C) 4人が「海」,1人が「山」を選ぶ
(D)3人が「海」,2人が「山」を選ぶ
(E) 2人が「海」,3人が「山」を選ぶ
(F) 1人が「海」,4人が「山」を選ぶ
(G) 全員が「山」を選ぶ

正解は(B)と(G)です. 全員が同じ言葉を選ぶ(B)と(G)では,どの人も他者の選択はそのままで自分の選択を変えると利得が低くなるので,ナッシュ均衡です.それ以外では,少数派になっているプレイヤーは,他者の選択がそのままのときに自分の選択だけを変えると多数派となり,利得が高くなるので,ナッシュ均衡ではありません.

では,次はどうでしょう.ライアーゲームの最初に出てくる「少数決」です.少数派になったほうが勝ちです.

練習5:(奇数人の少数決) 5人で「海」か「山」を選ぶ.少ない人数が選んだ方を選ぶと勝ちで, 多い人数が選んだ方を選ぶと負け.以下から,ナッシュ均衡を選べ.複数あるときはすべて選び,ないときは「なし」を選べ.
(A) なし
(B) 全員が「海」を選ぶ
(C) 4人が「海」,1人が「山」を選ぶ
(D) 3人が「海」,2人が「山」を選ぶ
(E) 2人が「海」,3人が「山」を選ぶ
(F) 1人が「海」,4人が「山」を選ぶ
(G) 全員が「山」を選ぶ

正解は(D)と(E)です.それ以外では,多数派になっている人は,自分だけの選択を変えると少数派となり利得が高くなりますので,ナッシュ均衡ではありません.

これに対し(D)と(E)では,すべてのプレイヤーが自分だけ選択を変えても利得が高くならない(同じか低くなる)のでナッシュ均衡です.なぜかと言うと,少数派となったプレイヤーは自分の選択を変えると多数派になり利得が下がりますし,多数派のプレイヤーは自分だけが選択を変えても,やはり多数派になってしまい(多数派が変わってしまいます)利得は同じになります.

もうお腹いっぱいでしょうかね?それでは,最後の問題です.

練習6:(7人じゃんけん)7人でじゃんけんをします.もちろんすべてのプレイヤーは,勝ち,あいこ,負けの順に良い(利得が高い)とします.
(A) なし
(B) 7人ともにグーを出す
(C) 3人がグー,4人がパーを出す
(D) 1人がグー,2人がパー,4人がチョキを出す
(E) 2人がグー,2人がパー,3人がチョキを出す
(F) 3人がグー,2人がパー,2人がチョキを出す

答えは(E)と(F)です!(B)「7人ともにグーを出す」や (C)「3人がグー,4人がパーを出す」では,グーの人がパーに変えることで負けから勝ちに転じて利得が高くなります.また(D)「1人がグー,2人がパー,4人がチョキ」では,グーの人がチョキに手を変えると,アイコから勝ちに転じて利得が高くなります.したがってナッシュ均衡ではありません.しかし(E)と(F)の場合は,どの人も自分だけが手を変えても,あいこからあいこになるだけで利得は高くなりません.したがって,(E)と(F)はナッシュ均衡です.

ナッシュ均衡(ざっくりした説明)

ここではまずナッシュ均衡について,ざっくり説明します.

  • ナッシュ均衡の求め方はこちらのページで.
  • クールノー均衡はこっち.
  • 定義などは,また後ほど.

ナッシュ均衡とは

ざっくりいうとナッシュ均衡とは

どのプレイヤーも,自分だけでは,それ以上利得が大きくできない状態

です.「状態」って言い方は不正確過ぎるか.もう少し正確に言うと,ナッシュ均衡とは

どのプレイヤーも,他のプレイヤーがそのナッシュ均衡の戦略を選んでいるもとでは,その戦略が一番利得が高くなる(他の戦略では利得が同じか低くなる)

ような戦略の組です.あんまり変わんないか.

ナッシュ均衡の例

例を挙げましょう(これは支配戦略の例で,客数を変えたものです).

2つのコンビニ,セレブ(セレブイレブン)とファミモ(ファミリーモール)が,まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている.コンビニを1日に利用する客はA駅が600人,B駅が750人である.セレブとファミモがもし違う駅を選べば,利用客を独占できる.しかし同じ駅に出店すると,ファミモが人気で,ファミモはセレブの2倍の客数を獲得できる.すなわち両方がA駅に出店すると,セレブ200人,ファミモ400人.B駅に出店すると,セレブ250人,ファミモ500人である.ここで客数を利得と考える.セレブとファミモはどちらの駅に出店するだろうか?

このゲームを利得行列で書くと下のようになります

ナッシュ均衡の例

例えば「セレブとファミモが共にA駅を選ぶこと」はナッシュ均衡ではありません.なぜならセレブは,ファミモがA駅を選んでいるなら,B駅に変えたほうが利得が高くなるからです.このように,他のプレイヤーの戦略が変わらないもとで,あるプレイヤーが選択を変えると利得が高くなるならば,その戦略の組はナッシュ均衡ではありません.

ナッシュ均衡ではない

これに対し,例えば「セレブがA駅,ファミモがB駅を選ぶこと」はナッシュ均衡です.なぜならセレブもファミモも,相手がそれを選んでいる限り,自分の利得をもっとも高くしているからです.つまりナッシュ均衡では,

どのプレイヤーも(相手がその戦略を選んでいるならば),それ以上利得を高くできない (他の戦略では利得が同じか低くなる)

と言うことになります.

ナッシュ均衡である

ナッシュ均衡は2つ以上あるときもある

しかしこの例では「セレブがA駅,ファミモがB駅を選ぶこと」だけではなく,
「セレブがB駅,ファミモがA駅を選ぶこと」 もナッシュ均衡になることが分かります.つまりナッシュ均衡は1つとは限らず,2つ以上ある場合もあります.このときどちらをゲーム理論の解とすべきかは難しい問題で,これは「均衡選択」と呼ばれる理論と「均衡精緻化」と呼ばれる理論で考えられています(2つの違いを説明するのはちょっと難しい)これはまた別の機会に.

ナッシュ均衡がなぜ解なのか

ナッシュ均衡以外が結果として予測されたとします.このとき,もしすべてのプレイヤーがその予測を知ったならば,少なくとも1人はその予測から違う行動を取ることで利得を高くすることができるはずです.そのプレイヤーは,ナッシュ均衡と違う行動を取るでしょうから,もはやその予測は当たりません.このことから,ゲームの結果の予測をプレイヤーが知っても結果が成り立つためには,その予測はナッシュ均衡でなければならないはずです.(「じゃんけんの必勝法と行動ファイナンス・行動経済学」も参考にしてください)

注意点と補足

  • すべてのプレイヤーが支配戦略を選んでいるときはナッシュ均衡になります.これはナッシュ均衡の特殊ケースと考えられます.したがって囚人のジレンマの結果もナッシュ均衡であると言えます.
  • 上記の点から考えると,じゃんけんにはナッシュ均衡がありませんが,確率を用いる「混合戦略」を考えるとナッシュ均衡が存在します.このような混合戦略まで考えると,すべてのn人有限ゲームにナッシュ均衡が存在します.この素晴らしい定理を誰が証明したかは,よく考えれば分かるはずである.これによって,その人はノーベル経済学賞を受賞しています.私ではありません.
  • ナッシュ均衡が分かったような気がしない?もう少し理解を深めたい?ではナッシュ均衡のおけいこ(1)で練習しましょう.
  • 2人ゲームの利得行列でのナッシュ均衡の求め方はこちら

じゃんけんの必勝法と行動ファイナンス・行動経済学

じゃんけん必勝法とナッシュ均衡の理解

じゃんけんの必勝法はゲーム理論の答である「ナッシュ均衡」を理解するために良い教材になります.
2人でジャンケンをするとき,ゲーム理論の解であるナッシュ均衡は「2人ともグー・チョキ・パーをすべて1/3で出すこと」となり,それ以外はありません.

「グー・チョキ・パーをすべて1/3で出す」以外に,ジャンケンの必勝法があったならば,どうなるのでしょうか?
例えば,1つの必勝法として「グーを多く出し,チョキをあまり出さない」という調査結果が知られており,したがって「パーを出すと勝つ確率があがる」とされています(こちら).また,2回続けて同じ手を出すと,次は異なる手を出すことが多く,したがって「2回続けてアイコになったら,それに負ける手を出せ」というのも必勝法の1つとされています.

( じゃんけんで出やすい手 のページも参考にしてください)

しかし「初心者にはパーを出せ」という必勝法を知っている人には,チョキを出すと勝つことができます.また「2回続けてアイコになったら,それに負ける手を出せ」という人には2回続けてアイコになったら,3回目も同じ手を出すと勝つことができます.このように「グー・チョキ・パーをすべて1/3で出す」以外のあらゆる「ジャンケンの必勝法」は,それを使うことが知られてしまうと,もう必勝法にはなりません.

ゲーム理論の解であるナッシュ均衡は「(自分がナッシュ均衡の戦略を選んでいる状態では),自分はナッシュ均衡以外の戦略を選んでも利得が高くならない」という状態です.「ナッシュ均衡が答だ」と知っているプレイヤー達は,相手がそれに従っていると知っていても,自分もその答に従うことが最適であり,ナッシュ均衡以外の戦略に変えたいと思う動機を持たないのです(これはナッシュ均衡の自己拘束性と呼ばれる).

逆に<ナッシュ均衡以外の予測が答だ>とされると,誰かはそこから選択や行動を変えることで利得が高くなります.したがって,その予測や予言をゲームをするプレイヤーが知ったときには,多くの人が知ったときには当たらなくなります.

このような理由から,ナッシュ均衡である 「2人ともグー・チョキ・パーをすべて1/3で出すこと」が唯一のゲームの解とされています.

行動ファイナンス・行動経済学とじゃんけんに対する考察

行動経済学や行動ファイナンスと呼ばれる分野は,人間が必ずしもゲーム理論や経済学の理論通りに行動しないということを研究する分野です.「人間は経済学で考えるほど合理的には行動しないんだ!」という事実を,たくさん教えてくれるこの分野は,多くの人にとって魅力的に映ります.

ジャンケンの必勝法について考察することは,行動経済学や行動ファイナンスに対して私達がどのように接するべきかを考える手がかりになります.行動ファイナンスや行動経済学では,理論から乖離した人間の行動や現象が観察されることがあります.行動ファイナンスや行動経済学と言っても,その立場には以下のようにいくつかのものがあるように思えます.


(1)人間の行動が,自己の獲得する金銭を最大にするのではなく,別に目的があることを明らかにする.この立場では個人は効用を最大にする合理的な人間と解釈している.例えばファイナンスでは「ファンドマネージャーは,運用益を最大にしようとするのではなく,他者の運用益の平均を下回らないように行動する」「最後通牒ゲームでは自己の獲得利益を最大にするだけではなく,他者と公平であることも望み,それとのバランスで効用が決まる」など.


(2)人間の思考や認知には限界があったり,感情が理性的な判断を邪魔することで本人が目的としていることと異なる選択をすることがある.この立場では,個人は効用を最大にできない非合理的な人間と解釈される.

上記の立場から,じゃんけんの必勝法を考察してみると,以下のようになるのではないでしょうか.

(1)の立場で発見された必勝法は,それが皆に知られても必勝法として残る可能性があると考えられます.ジャンケンに当てはめると,例えば「私はチョキを愛してやまない」という人がいたとすれば(そんな人はいないけど…),彼に対して「グーで勝つ」という必勝法は,たとえ彼がそれを知っても残る可能性があります.つまりこの場合は,彼は「勝つこと」より,「チョキを出して負けたこと」に喜んでいれば,それで勝った方も負けた方も自分の目的に従って合理的な選択をしたことになります.

余談ですが,私は競馬が好きなんですけど,毎年の回収率はマイナスです.非合理的だという人がいるんですが,私が競馬をするのはお金をプラスにするという目的よりは,自分の予想が当たるかどうかを楽しんだり,自分お好きな馬を応援したりするようなレジャーとしての目的が強く,ディズニーランドに行くのにお金を払ったりするのと同じように,競馬にお金を支払ってレジャーを楽しんでいることになります.もし競馬の目的を「お金を儲けることである」と規定されたら,私は非合理的な人間となりますが,「自らの予想が当たるかどうかを試す行為や,自分が好きな馬に賭けてそれを応援するという行為」が目的であるなら,これは合理的な行為だということになります.

しかし,じゃんけんにおいて「私はチョキを愛してやまない」という行為は考えにくいですよね?

これに対して(2)の立場で発見された必勝法-「初心者にはパーを出せ」「2回続けてアイコになったら,それに負ける手を出せ」と言った類のもの-は,それが皆に知られてしまったときに,なくなってしまうように思えます.ただし,人間の思考や認知に限界があるので「分かっていてもできない,だからこのような必勝法は使える」というのは1つの考え方かもしれません.これは「人間は,自分で乱数を作ることが難しい」などの認知科学の研究成果と合致する考え方である.

行動ファイナンスや行動経済学の研究に興味を持つ人には,このような人間の非合理的な行動パターンを利用して,超過利益を得ようとすることが目的である人も多くいるようです.果たして彼らは上記のことについて,どのように,どのくらい考えているのでしょうか.非合理的な人間行動の判断ミスやアノマリは「何らかの理由でなくならない」と考えるのでしょうか,それとも「それはやがてはなくなるけど,全員にそれが知られてなくなるまでの時間に,それを利用して利益をあげよう」と考えるのでしょうか.

私は,行動ファイナンスや行動経済学で明らかになった「事実そのもの」よりは,「その事実が将来になくなるものなのかなくならないものなのか.その判断基準が何なのか.なくならないとしたら,その理由は何であるか」について知りたいです.今後,これについてはたくさん勉強しなければならないなと思っています.

わたなべじゃんけんとは?

じゃんけんで出やすい手