支配戦略

支配戦略とは

戦略形ゲームにおいては、各プレイヤーがどの戦略(選択、行動、代替案)を選ぶかを決めることが分析の主たる目的となります。

このとき1人のプレイヤーに対して

自分以外のプレイヤーが何を選んでも、自分の他の戦略よりも良い戦略(利得を高くする戦略)

があれば、その戦略を(そのプレイヤーの)支配戦略と呼びます。
プレイヤーに支配戦略があれば、そのプレイヤーはその支配戦略を選ぶと考えます。

支配戦略の例

例を挙げましょう。

支配戦略の例(コンビニ戦争2):2つのコンビニ、セレブ(セレブイレブン)とファミモ(ファミリーモール)が、まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている。コンビニを1日に利用する客はA駅が1200人、B駅が300人である。セレブとファミモがもし違う駅を選べば、利用客を独占できる。しかし同じ駅に出店すると、ファミモが人気で、ファミモはセレブの2倍の客数を獲得できる。すなわち両方がA駅に出店すると、セレブ400人、ファミモ800人。B駅に出店すると、セレブ100人、ファミモ200人である。ここで客数を利得と考える。セレブとファミモはどちらの駅に出店するだろうか?

ゲーム理論を持ち出すまでもなく、ちょっと考えるとセレブもファミモもA駅を選ぶことが分かるでしょう。B駅を独占しても高々300人ですからね。でも最初はこの例から始めましょう。

このゲームを利得行列で書くと下のようになります。

コンビニ戦争2

このときセレブの視点に立ってみましょう。セレブは

  • ファミモがA駅を選ぶならB駅(300)よりA駅(400)を選ぶほうが良い。
  • セレブは、ファミモがB駅を選んでも B駅(100)よりA駅(1200)を選ぶほうが良い。

と言うことが分かります。セレブは、ファミモが何を選んでも、B駅よりはA駅の方が良い戦略です。したがってA駅はセレブの支配戦略です(以下の図)。

セレブの支配戦略

同様に ファミモの視点に立って考えてみます。

ファミモの支配戦略

セレブは、ファミモが何を選んでも、B駅よりはA駅の方が良い戦略です。したがってA駅はセレブの支配戦略です。

もしすべてのプレイヤーに支配戦略があれば、すべてのプレイヤーが支配戦略を選ぶことがゲームの答となり、そのゲームは解けたことになると言えるでしょう。今回の例では、セレブもファミモも支配戦略はA駅でしたから、両方ともA駅を選ぶと予測でき、ゲームは解けたことになります。

支配戦略はゲーム理論における「強い解」

支配戦略は、相手の選択に関わらず、自分にとって他の選択より良いような選択がある場合です。このときプレイヤーは、相手や自分にとっての知識が完全でなくても行動を確定することができます。例えば、

(禅が好きなアリス)アリスと文太は、それぞれ禅寺に行くか、ショッピングセンターに行くか悩んでいる。アリスはとにかく禅寺に行きたいので、文太が禅寺に行っても行かなくても、ショッピングセンターよりは禅寺がいい。

この場合、アリスにとって禅寺に行くことが支配戦略になり、アリスは禅寺に行くことが確定します(だから「悩んでいる」って問題設定はおかしいんだけど)。しかも

  • 文太の利得は全く分かっていない。つまりプレイヤーに支配戦略があれば、相手の行動どころか、利得さえ分からなくても、そのプレイヤーの行動は確定する。
  • アリスも結果に対する好みがすべて確定しているわけではない。例えば「文太と一緒に禅寺に行くこと」と「アリスだけが禅寺に行き、文太はショッピングセンターに行くこと」のどちらが良いかは問題には定められていない(文太が好きなのか、嫌いなのか?)。つまりプレイヤーは、相手の選択それぞれに対する自分の好みだけが分かっていれば行動は確定する。

ということになります。つまり支配戦略があれば、細かい情報はなくてもプレイヤーはそれを選ぶことになります。このことは、支配戦略によるプレイヤーの行動の予測は、かなり確かなものになっているということで、支配戦略がないゲーム(その解はナッシュ均衡)よりも、より確からしい予測を与えているということになります。

  • 「禅が好きなアリス」は文太の好みが分からないと、文太が何を選ぶかは分からない。この例の続きは(未完)。
  • 支配戦略がない場合は、ゲームの解としてはナッシュ均衡を考えることになる。

このように支配戦略があればゲームの解は自明なように思えますが、必ずしもそうではないように見えるゲームがあります。それが囚人のジレンマであり、共有地の悲劇です。

戦略形ゲームとは?利得行列とは?

戦略形ゲームは、展開形ゲームと並ぶ非協力ゲームの表現形式です(参照:戦略形ゲームと展開形ゲーム)。戦略形ゲームは、プレイヤー、戦略、利得の3つの要素から構成されます。すべてのプレイヤーは同時に戦略を選び、その結果、各プレイヤーの利得が決まります。

戦略形ゲームの例

戦略形ゲームの例として、次のような問題を考えてみましょう。

戦略形ゲームの例(コンビニ戦争1):2つのコンビニ、セレブ(セレブイレブン)とファミモ(ファミリーモール)が、まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている。コンビニを1日に利用する客はA駅が600人、B駅が300人である。セレブとファミモがもし違う駅を選べば、利用客を独占できる。しかし同じ駅に出店すると、ファミモが人気で、ファミモはセレブの2倍の客数を獲得できる。すなわち両方がA駅に出店すると、セレブ200人、ファミモ400人。B駅に出店すると、セレブ100人、ファミモ200人である。ここで客数を利得と考える。セレブとファミモはどちらの駅に出店するだろうか?

本題に入る前に言っておきたいのですが、別にこのページはコンビニの戦略の話をしたいのではなくて、ゲーム理論とは何かを話すための「例」ですからね。「両方に出店するというのはないのでしょうか」とか聞く人がいるけど(本当にたくさんいる)、そうしたければ、そういう例を勝手に考えてください。むかし、あるビジネス系の雑誌に、こういう例を出したら、雑誌の編集部の人がコンビニの会社の人に聞きに行って、そしたら「うちには『客を取り合う』という発想はない。2つのコンビニに同じ駅に出店すると集積効果があって、利用客は増える」とか言われてしまったのですが、そうならば、そういう例を作ればいいですよ。でも増えたりしたら、例として分かりにくいじゃないですか。ここはリアリティを求めてるんじゃなくて、わかりやすい例にしてるんです。

で、本題です。上記の例の場合、戦略形ゲームの3要素(プレイヤー、戦略、利得)は

  • プレイヤー:セレブとファミモ
  • セレブの戦略:A駅に出店する、B駅に出店する
  • ファミモの戦略:A駅に出店する、B駅に出店する
  • 利得:上記に書かれている客数

のようになります。このようにプレイヤーが2人のゲームを2人ゲームと呼び、その中でも両プレイヤーの戦略の数が2つの場合は2✕2ゲーム(ツーバイツーゲーム、と呼ぶ)と呼ばれます。2✕2ゲームは、戦略形ゲームの中で最も簡単なゲームであると言えます。

「利得は上記に書かれている」と言われても見にくいので、このような2人戦略形ゲームを表すには、以下のような利得行列という表を使います。

利得行列

この表では、セレブが行(水平方向)を選択し、ファミモが列(垂直方向)を選択し、交わったセルの左側の数値がセレブの利得、右側の数値がファミモの利得を表します。例えば、セレブがA駅、ファミモがB駅を選ぶと…

セレブがA駅、ファミモがB駅を選択

このようになり、セレブの利得が600、ファミモの利得が300になることが分かります。

利得行列にはいろいろな書き方があり、下の図のようにセルを左下と右上に区切り、左下に第1プレイヤー(行を選ぶプレイヤー、今回はセレブ)の利得、右上に第2プレイヤーの利得を書く場合もあります。

利得行列の別の書き方

ゲームを解く

戦略形ゲームにおいて、「プレイヤーが選ぶ戦略の組合せはどこになるのか」を求めることをゲームを解くと呼びます。ゲームを解くポイントは、支配戦略とナッシュ均衡です。

戦略形ゲームと展開形ゲーム

ものすごく乱暴に言うと「ゲーム理論(非協力ゲーム)には、戦略形ゲーム展開形ゲームがあり、戦略形ゲームは利得行列で表し、展開形ゲームはゲームの木で表す」ということになります。乱暴すぎて、かなり間違ってますが、最初から細かいことは覚えられないので、ざっくりこうしておきましょう。

さらに戦略形と展開形について、初めて学ぶときは

  • 戦略形ゲームは、プレイヤーが同時に行動を選ぶ「同時ゲーム」。代表的なゲームはじゃんけんなど。
  • 展開形ゲームは、プレイヤーが順番で行動を選ぶ「交互ゲーム」を含む「すべてのゲームを表現する」ゲーム。代表的なゲームはチェスや将棋など。

くらいに考えると良いです。これも乱暴すぎますけど。

ゲーム理論では「同時か、逐次か」と言った「時間」が重要なのではなく、相手の行動が観察できるかどうかが重要です。例えば、2人でじゃんけんをするとき、

  1. まず1人(先手)が相手に分からないように「ぐー、ちょき、ぱー」のどれかを選んで紙に書いて封筒に入れ、
  2. もう1人(後手)は封筒を開けずに 後から「ぐー、ちょき、ぱー」を選び
  3. 先手の書いた紙が公表されて勝負をする

としましょう。この場合は、時間としては交互に行動していますが、同時にじゃんけんをしているのと変わりありません(同時にじゃんけんすると、後出しっぽくなる人がいるのを考えると、こっちのほうがずっと「同時」かも知れない) 。先手は後手の行動を知らず、後手も先手の行動を知りません。この場合は戦略形ゲームになっていると言えます。

同時のゲームとは時間を指しているのではない

このように(すべてのプレイヤーが)他のプレイヤーの行動が観察できずに行動を選ぶ場合は戦略形ゲームです。オークションや競りを例に挙げれば、封印された紙に価格を書いて、最後に競り人がそれを開いて一番高額の人に出品された物を売る、と言った「封印入札」なども戦略形ゲームの典型的な例と言えます。

これに対して、チェスや将棋や囲碁では、自分より前に行動した人がどのような行動をしたかがすべて分かります。このようなゲームは完全情報ゲームと呼ばれますが、展開形ゲームで分析されるゲームの代表例です。オークションや競りでは、オークションハウスでの絵画の取引やマグロの競りなど、誰かが値段をつけたのを見て、それより高く買いたい人は更に高い価格をつける...などの「イングリッシュオークション」は展開形ゲームの典型例と言えます。同じ競りやオークションでも、ルールや形式によって違うゲームと考えられる点に注意です。

戦略形ゲームは「利得行列」と呼ばれる道具を用いて表現し、展開形ゲームは「ゲームの木」と言う道具を用いて表現します。戦略形ゲームと展開形ゲームについては、別の投稿で詳しく説明します。