ナッシュ均衡(ざっくりした説明)

ここではまずナッシュ均衡について,ざっくり説明します.ナッシュ均衡の定義,求め方,などは,また後ほど.

ナッシュ均衡とは

ざっくりいうとナッシュ均衡とは

どのプレイヤーも,自分だけでは,それ以上利得が大きくできない状態

です.「状態」って言い方は不正確過ぎるか.もう少し正確に言うと,ナッシュ均衡とは

どのプレイヤーも,他のプレイヤーがそのナッシュ均衡の戦略を選んでいるもとでは,その戦略が一番利得が高くなる(他の戦略では利得が同じか低くなる)

ような戦略の組です.あんまり変わんないか.

ナッシュ均衡の例

例を挙げましょう(これは支配戦略の例の客数を変えたものです).

2つのコンビニ,セレブ(セレブイレブン)とファミモ(ファミリーモール)が,まだコンビニがないA駅とB駅のどちらか一方に出店しようと考えている.コンビニを1日に利用する客はA駅が600人,B駅が750人である.セレブとファミモがもし違う駅を選べば,利用客を独占できる.しかし同じ駅に出店すると,ファミモが人気で,ファミモはセレブの2倍の客数を獲得できる.すなわち両方がA駅に出店すると,セレブ200人,ファミモ400人.B駅に出店すると,セレブ250人,ファミモ500人である.ここで客数を利得と考える.セレブとファミモはどちらの駅に出店するだろうか?

このゲームを利得行列で書くと下のようになります

ナッシュ均衡の例

例えば「セレブとファミモが共にA駅を選ぶこと」はナッシュ均衡ではありません.なぜならセレブは,ファミモがA駅を選んでいるなら,B駅に変えたほうが利得が高くなるからです.このように,他のプレイヤーの戦略が変わらないもとで,あるプレイヤーが選択を変えると利得が高くなるならば,その戦略の組はナッシュ均衡ではありません.

ナッシュ均衡ではない

これに対し,例えば「セレブがA駅,ファミモがB駅を選ぶこと」はナッシュ均衡です.なぜならセレブもファミモも,相手がそれを選んでいる限り,自分の利得をもっとも高くしているからです.つまりナッシュ均衡では,

どのプレイヤーも(相手がその戦略を選んでいるならば),それ以上利得を高くできない (他の戦略では利得が同じか低くなる)

と言うことになります.

ナッシュ均衡である

ナッシュ均衡は2つ以上あるときもある

しかしこの例では「セレブがA駅,ファミモがB駅を選ぶこと」だけではなく,
「セレブがB駅,ファミモがA駅を選ぶこと」 もナッシュ均衡になることが分かります.つまりナッシュ均衡は1つとは限らず,2つ以上ある場合もあります.このときどちらをゲーム理論の解とすべきかは難しい問題で,これは「均衡選択」と呼ばれる理論と「均衡精緻化」と呼ばれる理論で考えられています(2つの違いを説明するのはちょっと難しい)これはまた別の機会に.

ナッシュ均衡がなぜ解なのか

ナッシュ均衡以外が結果として予測されたとします.このとき,もしすべてのプレイヤーがその予測を知ったならば,少なくとも1人はその予測から違う行動を取ることで利得を高くすることができるはずです.そのプレイヤーは,ナッシュ均衡と違う行動を取るでしょうから,もはやその予測は当たりません.このことから,ゲームの結果の予測をプレイヤーが知っても結果が成り立つためには,その予測はナッシュ均衡でなければならないはずです.(「じゃんけんの必勝法と行動ファイナンス・行動経済学」も参考にしてください)

注意点と補足

  • すべてのプレイヤーが支配戦略を選んでいるときはナッシュ均衡になります.これはナッシュ均衡の特殊ケースと考えられます.したがって囚人のジレンマの結果もナッシュ均衡であると言えます.
  • 上記の点から考えると,じゃんけんにはナッシュ均衡がありませんが,確率を用いる「混合戦略」を考えるとナッシュ均衡が存在します.このような混合戦略まで考えると,すべてのn人有限ゲームにナッシュ均衡が存在します.この素晴らしい定理を誰が証明したかは,よく考えれば分かるはずである.これによって,その人はノーベル経済学賞を受賞しています.私ではありません.
  • ナッシュ均衡が分かったような気がしない?もう少し理解を深めたい?ではナッシュ均衡のおけいこ(1)で練習しましょう.

非協力ゲームと協力ゲーム

ゲーム理論は非協力ゲーム(non-cooperative game)と協力ゲーム(cooperative game)に分けられます.

ゲーム理論は経済学で大きく発展しました.近年,経済学で主に扱われているのは非協力ゲームです.このため「ゲーム理論」と言う言葉は,非協力ゲームのことを指すことも多いです.実際に,ゲーム理論の代表的なテキストTadelis(2012),Fudenberug and Tirole(1991) などでも協力ゲームは扱われていません.

これに対し,近年ゲーム理論の研究が盛んな計算機科学の分野では,協力ゲームもそれなりに扱われ,研究されているように見えます.

非協力ゲームは,プレイヤーが行動を選び,その結果が各プレイヤーにどのように好まれるか(利得)がモデルに与えられます.「プレイヤーがどのように行動するか」を明らかにすることが非協力ゲームの目的であると言えます.例えば非協力ゲームの代表的な例である「囚人のジレンマ」では:

  • プレイヤーは2人,各プレイヤーは「協力する」か「協力しない」かの2つの行動から1つを選ぶ
  • 各プレイヤーは次の順番に結果を好む
    • 自分が協力せず,相手が協力してくれること
    • 自分も相手も協力すること
    • 自分も相手も協力しないこと
    • 自分は協力して,相手が協力しないこと

というモデルです.ここではプレイヤーの行動と,その行動の帰結に対して,自分が何を好むかが与えられています.このような設定で,各プレイヤーがどのような行動を選ぶのかを明らかにすることが非協力ゲームであると言えます.

これに対し協力ゲームは,プレイヤーの提携(集合,結託,グループなどと呼ばれる)に対する利益が与えられます.例えば,

  • プレイヤーはA君,B君,C君の3人.大道芸をして稼ごうとしている.
  • A君,B君,C君は1人ずつだと1日の利益は0円.
  • A君とB君が一緒に組むと(これが「提携」)利益は1万円になる,B君とC君だと1万5千円,A君とC君だと2万円.
  • A君,B君,C君が3人で組むと,利益は3万円

と言ったモデルです.非協力ゲームと違い,プレイヤーには選ぶ「行動」がなく,提携に対する利益だけが与えられています.このような設定で「どのような提携が最終的に組まれるのか(全体提携が組まれるのか)」「そのとき利益はどのように分配されるのか」を明らかにすることが協力ゲームであると言えます.

協力ゲームでは,いかに提携の利益が発生するかが明確ではないため,その利益が本当に実現するのか,という問題が残ります.提携の利益が確実に得られる「拘束的合意」と呼ばれる合意が存在することが,前提になっているとも言われます.もともとは協力ゲームは,非協力ゲームの設定が与えられ,そこから各提携の利益が導かれるという形が出発点でした.それならば,元の非協力ゲームを分析すれば良いだろう(分析するべきだ)というのが,現在,経済学等で非協力ゲームだけが扱われる理由です.根底には「社会の状態は,個人が合理的に選択する行動の帰結として描写されるべきだ」という経済学の理論に対する考え方が現れてるとも言えましょう.

しかし目的によっては,協力ゲームのようなモデル化が便利な場合もあります.特に「どのような行動が選ばれて,どのような利益が得られるか」という「どうなるか(記述的理論)」ではなく,「提携ごとの利益から,どのように利益が各プレイヤーに配分されるべきか」という「どうあるべきか(規範的理論)」として活用できることが,協力ゲームの利点でもあります.

協力ゲームも非協力ゲームも,共にゲーム理論として発展してゆくべきだと私は考えています.